Assessing a New Approach to Class-Based Affirmative Action

Matthew N. Gaertner
University of Colorado at Boulder

Today's Presentation

Why?

Review policy climate and ballot initiatives that motivate this research

▶ How?

 Introduce class-based affirmative action at the University of Colorado – Boulder

▶ To what end?

Present findings from analyses designed to forecast the impact of implementing class-based affirmative action

Background

- ▶ 2008 Election: Amendment 46
 - "Colorado Civil Rights Initiative" sought to eliminate race-based affirmative action at public universities in Colorado
- Posed serious threats to undergraduate admissions at CU, which seeks to admit:
 - ▶ 1) Students that possess backgrounds, perspectives, and life experiences that provide a unique and important contribution
 - ▶ 2) Students that have overcome significant adversity
- In anticipation of the vote, CU developed statistical approaches to support class-based affirmative action

Class-Based Affirmative Action

"Top X%" Plans

 Guaranteed admission to state university for applicants whose class rank is sufficiently high

▶ UCLA Law School (Sander, 1997).

- Synthesized applicant-level factors on a single quantitative scale
- My approach attempts to quantify:
 - ▶ 1) The socioeconomic obstacles an applicant has faced
 - ▶ 2) The extent to which that applicant has overcome those obstacles (Kahlenberg, 1997)

Measuring Disadvantage and Overachievement

The Disadvantage Index

- Purpose: Quantify the obstacles an applicant has faced
 - The reduction, owing to socioeconomic circumstance, in an applicant's likelihood of attending a 4-year college

▶ The Overachievement Index

- Purpose: Quantify the extent to which an applicant has overcome obstacles
 - The extent to which an applicant's academic credentials exceed what is expected, conditional on socioeconomic factors.

The Disadvantage Index

▶ <u>Step 1</u>

$$P(E_i = 1) = \frac{\exp(\beta \mathbf{X}_i + \xi \mathbf{Z}_i)}{1 + \exp(\beta \mathbf{X}_i + \xi \mathbf{Z}_i)}$$

- \triangleright E_i indicates college enrollment (dichotomous)
- \mathbf{X}_i is a vector of achievement variables
- \mathbf{Z}_i is a vector of socioeconomic variables
- Step 2

$$DI_i = \widehat{P}(E_i = 1 | \widehat{\boldsymbol{\beta}} \mathbf{X}_i, \widehat{\boldsymbol{\xi}} \mathbf{Z}_i) - \widehat{P}(E_i = 1 | \widehat{\boldsymbol{\beta}} \mathbf{X}_i, \widehat{\boldsymbol{\xi}} \mathbf{Z}^*)$$

In **Z***, socioeconomic variables are fixed at the values of a "typical" CU applicant.

The Disadvantage Index

The Overachievement Index

▶ <u>Step 1</u>

$$Y_i = \mathbf{\theta} \mathbf{K}_i + \varepsilon_i$$

- Y_i represents an academic credential (HSGPA, ACT, SAT)
- \mathbf{K}_i is a vector of socioeconomic variables

$$OI_i = e_i = Y_i - \widehat{\mathbf{\theta}} \mathbf{K}_i$$

 \triangleright e_i is the residual from the regression model above

The Overachievement Index

Academic and Socioeconomic Variables: ELS

Academic

- Cumulative HSGPA
- SAT and ACT scores

Applicant-Level

- Family income
- Parents' education level
- Single parent
- Native English speaker

School-Level

- Percentage of students receiving FRL
- Rural location
- Student-toteacher ratio
- Size of the 12th grade class

Establishing Cut-Points

- Disadvantage and Overachievement scales are unfamiliar to admissions officers
- Initially, cut-points were set at one and two standard deviations from the CU applicant pool means
 - Moderate / severe disadvantage
 - High / extraordinary overachievement
- Revised cut-points rely on a standard-setting procedure, where senior admissions officers were subject matter experts

Implementation of Indices

- Undergraduate application review relies on primary and secondary factors
- Primary factors guide admissions decisions
 - Rigor of curriculum, cumulative GPA, quality of secondary school, etc.
- Secondary factors are less influential
 - Legacy status, race/ethnicity, performing arts, etc.

Implementation of Indices

	No Overachievement	High Overachievement	Extraordinary Overachievement
No Disadvantage	No admissions boost	Secondary factor boost	Primary factor boost
Moderate Disadvantage	Secondary factor boost	Primary factor boost	Primary factor boost
Severe Disadvantage	Primary factor boost	Primary factor boost	Primary factor boost

Research Question 1

▶ To what extent does the implementation of CU's class-based affirmative action policy change the likelihood of acceptance for low-SES and minority students?

2009 Experiment

- ▶ A small sample (n=478) was randomly selected from the Fall 2009 applicant pool
- Each sampled application was reviewed twice
 - Control Condition: Race-based affirmative action
 - Official decision
 - Treatment Condition: Class-based affirmative action
 - Unofficial second review
 - No admissions officer reviewed the same application twice

Findings: 2009 Experiment

A 1° 4 70°		Acceptance Rate			
Applicant Type	N	Class-based	Race-based	Difference	
Low SES	121	81%	72%	9%**	
Severely Low SES	35	83%	63%	20%*	
URM	48	64%	56%	8%	

^{*}p < 0.05; **p < 0.01, via test of correlated proportions (McNemar, 1947)

2010 Experiment

- ▶ A large sample (n=2,000) was randomly selected from the Fall 2010 applicant pool
- Sampled applications were randomly assigned
 - Control Condition: Race-based affirmative action
 - Treatment Condition: Class-plus-race affirmative action
- Analytic focus on acceptance rates for poor and underrepresented minority applicants

Findings: 2010 Experiment

Applicant Type	Class-Plus-Race		Race-Based		Difference
Applicant Type	N	Acceptance Rate	N	Acceptance Rate	Difference
Low SES	212	58%	195	49%	9%*
Severely Low SES	54	57%	55	44%	13%
URM	118	62%	118	45%	17%**
Low SES and URM	47	59%	43	27%	32%**

^{*}p < 0.05; **p < 0.01, via Fisher's exact test (Fisher, 1934)

Research Question 2

What is the likelihood of college success for students admitted under CU's class-based policy?

Focusing on Class-Based Admits

- ▶ Nineteen applicants from the 2009 experiment were:
 - (1) admitted under class-based condition, and
 - (2) refused under race-based condition
- Marginal academic credentials and low SES suggest the possibility of "academic mismatch" (Sander, 2004)
- Class-based admits were matched to historical CU students ("impostors")
 - I examine college outcomes for historical impostors

College Outcomes for Class-Based Admits

Group	N	% Graduating in 4 Years	% Graduating in 6 Years	Undergraduate GPA
Impostors	2,704	28.3%	52.9%	2.50
Baseline	18,422	39.8%	66.0%	2.83

- Across measures, college outcomes are lower for historical impostors
- More than half of the impostors ultimately graduated

College Outcomes for Class-Based Admits

Group	N	% Graduating in 4 Years	% Graduating in 6 Years	Undergraduate GPA	
Impostors ("Overachievers")	601	44.8%	70.0%	2.94	
Baseline	18,422	39.8%	66.0%	2.83	

- Overachievers tend to outperform the baseline
- Outcomes for disadvantaged students are low, relative to the baseline

Discussion

- Impact of using class-based affirmative action
 - As a substitute for race-based affirmative action, it can maintain minority acceptance rates *under certain* conditions
 - Used in concert with race-based affirmative action, it can significantly improve minority acceptance rates *under certain conditions*
- College prospects for class-based admits
 - Overall results suggest success is possible for class-based admits, but far from guaranteed

Limitations

- Analysis of college outcomes relied on:
 - Historical data
 - Small sample of class-based admits
- Unclear how these findings generalize to elite, highly selective institutions
 - Highly selective universities tend to place significant weight on minority status
 - Class-based admits at elite schools may perform better than these results suggest

Final Thoughts

Large, moderately selective public universities are underrepresented in affirmative action scholarship

 More than half of the undergraduates in the United States attend large public universities (Snyder & Dillow, 2010)