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Introduction

In March of 1999, the Association for Institutional Research offered

the first Applied Statistics Institute. The Professional Development Services

Committee in conjunction with the Publications Committee undertook the

development of the current Resources in Institutional Research monograph.

The goal of this document is to provide a resource for institutional research

professionals concerning the application of intermediate/advanced statistics

in institutional research settings, as well as provide a resource document to

participants attending the Applied Statistics Institute.

As a result, the curriculum of the Applied Statistics Institute has served

as the basis for the content of this monograph. The Institute offers five

specialized modules. Each module provides a theoretical context with

practical applications, exercises, and interpretive and presentation

techniques for each statistical approach. The five modules focus on: non-

parametric statistics, regression analysis, analysis of variance, identifying

and analyzing group difference, multilevel models, and multivariate statistics.

As a result, each chapter is authored by the faculty member who has

described these applications and techniques. Additional data sets and

exercises will be made available on the AIR Web site www.airweb.org.

The focus of this monograph is not to cover each statistical area in

depth; rather it is to describe the theory and application of these procedures

to institutional research settings. As a result, the reader should be familiar

with basic statistical principles and applications. In addition, the reader

may need to refer to supplemental readings provided within each chapter to

more fully understand each statistical application.

Similar to the learning objectives of the Applied Statistics Institute, the

goal of this monograph is to educate the reader about: uses of non-parametric

statistics for common assessment activities; applications of regression

techniques to higher education problems and issues; uses of ANOVA for

rating scale data, student performance data, and other IR data; applications

of techniques for identifying groups and determining how groups differ; uses

of advanced statistics to provide evidence of institutional effectiveness; and

applications of multilevel modeling techniques to common institutional
research questions.

ENJOY and consider joining us for an upcoming Applied Statistics
Institute.

Mary Ann Coughlin

Editor

IV



Chapter 1

Nonparametric Statistics:

Applications in Institutional Research

Richard Howard

Gerald McLaughlin

Josetta McLaughlin

The statistical tests and procedures outlined in other chapters of this

book in general are known as "parametric tests." Those statistical procedures

require the researcher to assume that the population from which data are

collected reflect a normal distribution and, assuming that the sample is

representative of the population, also reflect the properties of a normal

distribution. While the actual distribution of the sample may not be exactly

normal, it is considered "close enough" in most cases, and the problem

under study is modeled using the assumptions and probabilities that define

the normal distribution. In this way, the use of Parametric Statistics results

in exactsolutions to approximate problems (Conover, 1971). Computationally,

parametric tests require: (1) sample sizes greater than 30 observations;

(2) data that reflect the properties of interval or ratio measurement scales;

and (3) specific data about each observation.

While appropriate for many research projects, parametric statistics do

not serve the needs of researchers whose data sets fail to meet the criteria

noted above or whose data sets are small due to the nature of the project.

During the 1930s, statisticians proposed alternative procedures that did not

rely on the assumptions required to use parametric statistics. The resultant

statistical tests, known as nonparametric tests, are not dependent on the

normal distribution to define desired probabilities but use other distributions

or close approximations. These tests allow the researcher to model the

problem under study. In many cases, they are easier to apply in that less

computational work is required. As such, Nonparametric Statistics results in

approximate solutions to exactproblems (Conover, 1971). Computationally,

these tests: (1) are not dependent on large numbers of observations; (2) use

data that reflect in most cases the properties of nominal or ordinal

measurement scales; and (3) are frequently used to analyze summarized or

categorical count data.

The choice of whether to use a parametric test or nonparametric test is

dictated by the characteristics of the data as described above. Be aware,

however, that nonparametric tests are not in general as sensitive as parametric

tests. In other words, parametric tests are more likely than their nonparametric

counterparts to detect a statistically significant difference between two or

more treatments or a significant relationship between two variables. When

1



faced with a situation where the data will allow you to choose between the

use of a parametric test and a nonparametric test, the parametric test is the

recommended option (Gravetter & Wallnau, 2004; Zar, 1984).

Institutional Research Context

Often the statistical problems that face institutional researchers include

situations involving large numbers of observations such as the student

population or the institution's faculty and staff. In these cases, the use of

parametric approaches to studying the problems are usually appropriate as

the underlying distributions are typically "close enough" to normal to provide

reliable information. However, it is also often the case that the data reflect

one or more of the following characteristics making the use of parametric

analyses inappropriate or impossible:

• small sample size;

• data summarized into categories;

• a non-normal or unknown distribution; and/or

• nominal or ordinal measurement scales.

Institutional researchers are often faced with situations when the data

they are working with originate in reports (paper and Web-based) in which

the data are summarized in categories, such as disciplines, students by

rank, or by institutions. In other cases, the unit of analysis might be the

department, college, or program in which comparison information between

six to ten comparators is the intent of the analysis. The normal distribution

does not model the data, especially when there are not enough observations

to invoke the assumptions of normality and parametric tests are not appropriate.

Nonparametric tests were designed specifically to address these situations.

In this chapter, a number of nonparametric tests are presented with

examples reflecting "typical" questions that might be asked of an institutional

research office. The primary and traditional non-parametric tests included

are those that have the following characteristics: (1) standard procedures

exist to compute them and (2) they are included in the SPSS procedures.

Many of these tests have large sample equations, but we do not present

those formulae in this chapter. They can be found in basic nonparametric

texts such as The Handbook of Parametric and Nonparametric Statistical

Procedures, by D. J. Sheskin, 1997. In addition, we discuss some fairly new

and advanced techniques. Some, such as log-linear analysis, are statistical

tests. Others, such as Bootstrapping, can lead to statistical statements.

Finally, some of the techniques, such as Data Mining, do not tend to make

probabilistic statements but are more an extension of ExploratoryData Analysis

techniques. Individuals interested in learning more about these tools are

referred to the references at the end of the chapter.



Chapter Organization

The format of this chapter is somewhat different from the others in this

book. In general, the other authors dealt with a specific family of tests, i.e.

Analysis of Variance or Regression. In contrast, we present a number of

tests that have three fundamental purposes - tests of "location", tests for

"goodness of fit", and tests of "association". The only common parameter is

that the tests do not rely on assumptions associated with normal or other

distributions. In most introductory statistics and social science research

texts, nonparametric statistical tests are discussed in terms of this

assumption, and only the most common of the nonparametric tests are

presented (Chi Square, Mann-Whiteny U, Sperman Rho, etc.). There are a

number of situations where less common nonparametric tests can be used

to provide the statistical evidence to support an institutional position, the

evaluation of a policy, or the effects of a process or procedure. Obviously, the

scope of this book does not allow us to present all nonparametric tests that

might be appropriate for examining institutional data. Nevertheless, our intent

is to provide an overview of selected tests with examples of how they can be

used to answer typical questions posed to an institutional research office.

The order of the chapter is as follows: First we present a basic

methodology for testing the assumption that the data to be analyzed reflects

a normal distribution. Next we present a series of nonparametric tests

appropriate for use with those cases where a normal distribution is not

assumed, the scale is not interval or ratio, or other reasons exist that support

using a nonparametric test. For each test, we indicate the purpose of the

test, assumptions about the data, the hypothesis to be tested, an example

of using the test in an institutional research context, and the SPSS procedure

and output. The specific tests are presented and organized according to the

purpose of the test and the number of samples.

The tests described in the chapter are summarized in Tables 1,2, and

3 based on purpose, scale, and the number of samples. For each of the

nonparametric tests presented in the tables, a data set has been developed

and can be accessed through the Association for Institutional Research Web

site (http://airweb.org). The data sets specific to particular tests are identified

in the discussion of each test. The intent is that the reader should be able to

access a particular data set and run the test as described in the chapter.

This will allow the researcher to practice setting up the SPSS procedure and

to then compare the outcome with that presented in the chapter. If the same

output is obtained as shown in the chapter, then the researcher will be ready

to analyze the data set of concern. Finally, we discuss some advanced

methodologies and concerns.



Table 1

Nonparametric Tests of Location

No. of

Samples

Scale

Nominal

Ordinal

Interval

Parametric

Equivalent

One Sample

Binomial Test

Runs Test

Sign Test

Wilcoxon

Signed-ranks Test

One Sample t-test

Two Samples

Independent

Median Test

Mann-Whitney U

Test

Two Sample t-test

Two Samples

Related

McNemar Test

Sign Test for

Two Dependent

Samples

Wilcoxon

Matched Pairs

Signed-ranks

Test

Paired t-test

Three or more

Samples

Independent

Median Test

Kruskal-Wallis

ANOVA by Ranks

ANOVA

Three or more

Samples Related

Cochran Q

Friedman

Two-way ANOVA

Within Subjects

ANOVA

Table 2

Nonparametric Analysis for Goodness of Fit*

No. of

Samples

Scale

Nominal

Ordinal

One Sample

One Sample Chi Square

One Sample Kolmogorov-Smirnov

Two Samples

Chi Square Test of Independence

Two Sample Kolmogorov-Smirnov

*no generally comparable Parametric techniques

Table 3

Nonparametric Analysis for Association

No. of

Variables

Scale

Nominal

Ordinal

Parametric

Equivalent

Two Variables

Phi Coefficient (2x2)

Point Biserial (2xLinear)

Chi Square Test of Independence

Spearman Rho

Pearson Correlation

Three or more Variables

Log-Linear (not include)

Kendall's Coefficient of

Concordance W

Eta Squared



Looking at the Data: Determining When

to Use Nonparametric Statistics

Properties of Nonparametric Statistics

As indicated above, nonparametric statistical tools are not based on

the properties of the normal distribution. Because they do not require that

assumptions be made about the normality of the sampled population, the

term distribution-free test is sometimes applied to these statistical tools

(Zar,1984,p.138).

Nonparametric statistics are those which have one or more of the

following properties:

• The data are count data that enumerate the number of observations

having some characteristic or belonging to a specific group.

• The data are measured and/or analyzed using a nominal scale or

ordinal scale.

• The inference does not concern a parameter in the population.

• The probability distribution of the statistic on which the analysis is

based is not dependent upon specific information or assumptions

about the population from which the sample(s) is drawn, but only

on general assumptions such as being continuous and/or

symmetric (See Sheskin, 1997; Zar, 1984; Gibbons, 1971).

Measurement Scales

To know when it is appropriate to use a nonparametric test, the

researcher must understand the level of measurement used to measure the

characteristic of interest. As a quick review, we briefly define each of the four

measurement scales commonly employed — nominal, ordinal, interval, and

ratio. For a more detailed discussion of the four measurement scales, refer

to any introductory statistics or social science research text (Gravetter &

Wallnau, 2004; Hinkle, Wiersma, & Jurs, 1998; Gay & Airasian, 2003).

• Nominal: When the variable is classified on the basis of some

quality rather than on a numerical basis, the level of measurement

is nominal. An example would be a student's major. When using

nominal data, the researcher generally counts the number of

observations in each category. This level of measurement is

sometimes referred to as categorical.

• Ordinal: When data reflect relative differences rather than

quantitative differences and can be ranked, the level of measurement



is ordinal. The researcher generally ranks the data along some

characteristic, typically from highest to lowest. An example would

be student academic level, e.g., senior>junior>sophomore>first

year students.

• Interval: When the elements can be differentiated and ordered and

the arithmetic difference between elements is meaningful, the level

of measurement is interval. The data possess a constant interval

size but do not possess a true zero. An example would be student

grades. (Even though this scale has a zero, it is not likely a "true"

zero.)

• Ratio: When there is an interval scale with a fixed origin and the

basic scale indicates proportionality, the level of measurement is

ratio. In other words, an absolute zero point exists in the scale. An

example would be tuition revenue.

Generally, nonparametric statistics require only that the data to be

analyzed are nominal or ordinal. It is useful to remember that the

measurement scales are cumulative in that each scale involves the

characteristics of the former scale plus another property. As such,

interval and ratio data can be restructured, i.e., recoded, as either nominal or

ordinal data, and nonparametric statistical tests can then appropriately be

used as the analysis tools. This is typically done when the number of

observations is small or the distribution of the data is not normal.

Hypothesis Testing

As noted in other chapters of this book, a hypothesis is a statement,

often based on some theory that is made to explain certain observations

requiring further investigation. Setting up and testing hypotheses is a critical

step in conducting credible statistical procedures. In the testing of a

hypothesis, the first step is to determine the correct directional representation

of the hypothesis. Typically one has the option of doing either a non-directional

hypothesis (X = Y) or a directional hypothesis (X>Y). The safest option is the

non-directional hypothesis. However, because the assigned risk is in both

tails of the probability distribution of the statistic in the non-directional while

only in one tail for the directional hypothesis, the directional hypothesis is

more likely to be rejected. In other words, the statistic required for rejection

of a non-directional hypothesis needs to be larger than the statistic required

for rejection of a directional hypothesis at a given risk level.

After the decision on the hypothesis has been made, the next step is

to select an alpha level that reflects the willingness to reject the null hypothesis

when it is in fact true (Type I or a risk). There are then two basic ways to look

at the appropriateness of rejecting or not rejecting the null hypothesis. They



differ only by a mathematical process. The first way is to use the rejection

level (either a = p =.0x or a/2 = p = .Ox) to identify the associated critical

value of the statistic. The second way is to take the computed statistic and

determine the likelihood that such a statistic could occur by chance. This

likelihood - or probability - is then compared to the alpha risk for the

hypothesis, and a decision is made about whether to reject the null hypothesis.

The traditional approach has been to compute a statistic and compare it to

the value of the statistic required to make the determination about rejecting

or not rejecting the null hypothesis. In fact, the output from SPSS makes the

comparison of the probability of the computed statistic to the assigned alpha

risk the most direct manner for making a decision about the null hypothesis.

Tests for Normality

As noted, choice of nonparametric statistics requires that the distribution

of the data be evaluated. Evaluation of skewness and kurtosis can help the

researcher determine whether the data reflect a normal or non-normal

distribution. Skewness is a measure of asymmetry of the distribution of

numbers. A normal distribution is symmetrical. There are multiple procedures

for evaluation of skewness. For example, the formula for the mean of the

cubed Z scores is sometimes used to calculate skewness. If the calculated

value is "0", i.e., zero, the distribution of the set of numbers is symmetrical.

If the value is less than zero, the long tail of the distribution is to the left of the

distribution, and the mean is less than the median. If the value is greater than

zero, the long tail is to the right and the mean is greater than the median

(Mertler & Vannatta, 2002).

As with skewness, there are multiple procedures available for evaluating

kurtosis. Kurtosis is a measure of the presence of extreme values in the

distribution. If the distribution is relatively peaked in the middle, kurtosis will

be greater than zero. If the distribution is rather flat, the kurtosis will be less

than zero. Normal distributions have a kurtosis of zero (Mertler & Vannatta,

2002). The tests for skewness and kurtosis are very sensitive. Often a single

number or a few numbers in a large distribution will result in a statistically

significant skewness or kurtosis statistic. Inspecting a frequency distribution

will reveal the outliers.

Example: A group of entering first year students was administered

pre-tests upon registering for a basic linear algebra course. A post-test was

administered following completion of the course. Researchers want to answer

the following question: For a group of entering first year students, is the

distribution of the improvementscores on the math achievement testnormal?

In SPSS, the Skewness and the Kurtosis statistics are calculated using

the Explore procedure. The Standard Error (SE) for each of these statistics

is also calculated. To determine if a distribution of numbers is statistically

different from a normal distribution, the Skewness and Kurtosis statistics

can be converted to Z scores by dividing the statistic by its standard error.



The scores can then be

compared to 1.96 (a = .05)

or 2.56 (a = .01). If the Z

value is less than these

figures or critical values, it

can be assumed that the

distribution of the set of

scores is normally

distributed.

Conclusion: The

statistical measures for

skewness and kurtosis are

not significantly different

from what would be

expected from a normal

distribution.

The findings indicate

that the distribution is

normal or very close to

normal. Dividing the

statistic for skewness (.211)

by its standard error (.121)

yields 1.74, which is less

than the critical value 1.96.

The Stem and Leaf

output and Q-Q plot confirm

this conclusion. The "stem

and leaf" distribution is

normal looking. In the Stem

and Leaf plot, the "&"

represents a fractional leaf.

The trimmed mean is the

mean of the observations

between the 5th and 95th

percentile and tends to be

less sensitive to extreme

values. In the Q-Q plot

shown below, the

observations are very near

the line reflecting a normal

distribution.

SPSS Output

Improvement

Scores

Mean

95% Confidence

Interval for Mean

5% Trimmed Mean

Medium

Variance

Std. Deviation

Minimum

Maximum

Range

Interquartile Range

Skewness

Kurtosis

Statistic

15.50

15.22

15.77

15.46

15.50

7.958

2.821

8

25

17

3.53

.211

.389

Standard. Error

.140

.121

.242

Stem and Leaf Output for Math

Improvement Scores

Frequency

2.00

3.00

3.00

6.00

23.00

28.00

43.00

65.00

62.00

55.00

39.00

26.00

27.00

8.00

9.00

3.00

4.00

Stem and Leaf

Extremes (=<8.0)

8. 5

9. 5&

10. 005

11. 000045555&&

12. 0000025555689&

13. 000000222455555556789

14. 00000000234455555555555778999&

15. 0000000123445555555555778889&

16. 0000000022444455555567899&

17. 00000002334556678&

18. 00002255667&

19. 000000245556&

20. 15&

21. 00&&

22. 2&

Extremes (>=23.5)
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Normal Q-Q Plot of Improvement Scores

0 10

Observed Value

30

SPSS Procedure:

Use data set: tests of normality

1. Descriptive Statistics

2. Explore

3. Move Math Placement Test from the "Variable List" window to

the "Dependent List" window

4. Under "Display" click "Both"

5. Click "Plots"

6. Under "Boxplots" click "none"

7. Under "Descriptive" check "stem-and-leaf"

8. Check "Normality plots with tests"

9. Click "continue"

10. Click "OK"

Nonparametric Tests: Descriptions and Examples

Tests of Location: One Sample

Binomial Test: Nominal

A test that requires the presence of a dichotomous measure is the

Binomial Test. This test is based on the characteristics of the Binomial

Distribution. The assumption underpinning this distribution is that if an event

is occurring at random from a distribution where an event has the likelihood of

(p), then for N observations the event is expected to occur (N*p) times with a

9



variance of N*p*(1 -p). Using this distribution in its known quantities, we can

test to determine the likelihood an event is occurring from a population that

has a hypothesized probability of (p). This is a one sample test of location for

beliefs about the size of the probability of one category occurring in the

population.

Assumptions:

1. The outcome can be categorized as a dichotomous measure where

one of the categories occurs in the sample with probability p.

2. There is a hypothesized proportion of the outcomes (p0) that will

be in the specific categories.

Hypotheses:

Two-tailed: Ho: p = po, H,: p*p0,

One-tailed: Ho: p > p0 .H^ p < po, or

Ho:p<po, H1:p>p0

Procedure:

1. State the null and alternative hypotheses.

2. Select a level of significance a.

3. Compute the proportion in the sample (p).

4. Reject the null hypothesis if the proportion is sufficiently small or

large compared to the proportion in the hypothesis (p0).

Note:When there are more than about twenty observations, an approximation

using the normal distribution works well.

Example: It is observed that six of the students in an English literature class

of twenty students are engineering majors. It is known that 60% of the

students in the university are in Engineering. Researchers want to answer

the following question: Does this English class have a representative number

of engineering majors? (po = .6, p = 6/20 = .3, n = 20)

Hypothesis (Two Tailed): Ho: p = po, H,: p * po a = .05

Binomial Test

Major Group 1

Group 2

Total

Category

Engineers

Other

N

6

14

20

SPSS Output

Observed

Prop.

.3

.7

1.0

Test

Prop.

.6

a Alternative hypothesis states that the proportion of cases in the

Exact Sig.

(1-tailed)

.006(a)

first group < .6.

10



SPSS Procedure:

Use data set: Binomial Test

1. Nonparametric Tests

2. Binomial Test

3. Move Majors from "Variables list" window to "'Dependent Variables

List" window

4. Under "Defined Dichotomy" click "Get from data"

5. "Test Proportion" enter .60

6. Click "OK"

Conclusion: Reject the null hypothesis (Ho: p = p0) because p= .012 < .025.

The hypothesis was stated as a two-tailed, nondirectional test (Ho: p =

p0, H^ p * p0). The SPSS Output is for a one-tailed, directional test (Ho: p >

p0 H^ p < p0). Therefore, the "Exact Sig." (p = .006) must be adjusted to

reflect (p = .012). Results of the analysis thus suggest that the null hypothesis

should be rejected. The researcher can conclude that the class does not

have a representative number of engineering majors.

Runs Test for Random Sequence: Nominal

A Runs Test is a special case of the binomial test that examines non-

randomness when there is a sequence of binary events, i.e., to determine if

the sequence of events is random. For example, it may be desirable to see if

the time to complete a learning task is related to a student's major. In this

case, the score is 1 if the student is a business major and 2 if the student is

any other type of major. This is similar in concept to looking at the normality

of the distribution in that it looks at one of the more basic assumptions made

when we do research. The assumption concerns randomness and whether the

series of events is coming from a random sequence that would produce a binary

sequence where the two events are occurring in a random sequence. If the two

categories that are feasible are scored 1 and 2, the sequence of 1's and 2's

should alternate a certain number of times by chance if the sequence is random.

A "run" is defined as a sequence of like items that are followed or

preceded by a different item or no item at all. If there is a much smaller

number or larger number of runs than one would expect, then the likelihood is

that the sequence is not random. The researcher must thus examine the

sequence in which the events are observed. The sequence can be a natural

event, such as time, or it can be an ordered set of events such as the points

on a trend line or regression equation. For large samples, one would expect

2p*q*n runs where p is the portion in one of the categories, q is the portion in

the other (q = 1 - p), and n is the number of observations. A similar

methodology also exists for looking at the length of the longest run but is not

shown here.
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Assumption:

There is a sequence of events that results in a binomial set of categories.

Hypotheses:

Two-tailed: Ho: R = Ro , o

One-tailed: Ho: R > Ro, H1: R < Ro, or Ho: R < Ro

H,: R Ro

R > Ro

Procedure:

1. State the null and alternative hypotheses.

2. Select a level of significance a.

3. Count the number of times there is a run in the sequence of

observations. (If the observations are occurring in a random

sequence the number of runs will be about n*p*q.)

4. Determine whether there is a sufficiently small number of runs or

a sufficiently large number of runs to reject the null hypothesis.

Example: When the time to complete an exam was identified, the pattern of

majors (M) and non-majors (N) was M.M.M. N.N. M.M.M. N.N.N.N.N. M.

The sequence of results has five runs (R

= 5) and fourteen observations with seven SPSS Output

majors and seven non-majors. Runs Test

Researchers want to answer the following

question: Does the pattern indicate that

there is a difference in the time students

take to complete the exam based on what

theirmajors are?

Hypotheses (Two Tailed): Ho: R = Ro, H^

R*RQj a = .05

Conclusion: Fail to reject the null

hypothesis (Ho: R = Ro) given that p =.155

>.O5.

Results from

SPSS give a

probability of (p =

.155) for the two-

tailed test.

Assuming a = .05

and a critical value

of -1.96, the null

hypothesis cannot

be rejected based

on(Z= -1.391). In

other words, no evidence exists that the sequence is non-random. If the

Test Value

Cases < Test Value

Cases >= Test Value

Total Cases

Number of Runs

Z

Asymptotic. Sig. (2-tailed)

Exact Sig. (2-tailed)

Major/

Non Major

1.5000

7

7

14

5

-1.391

.164

.155

a Median

SPSS Procedure:

Use data set: Runs test

1. Nonparametric

2. Runs

3. Move Major/Non Majorbom the "Variable List" window to the

"Test variable list" window

4. In the "Cut point" window, check "median"

5. Click "OK"

12



question of interest were asked such that a directional or one-tailed test were

appropriate, then the statistical significance would be (p = .0775) for this

example. This type of hypothesis might be tested if the question of interest

concerned whether there were a very small number of runs with all the majors

(M's) completing the exam sooner than the non-majors (N's).

One Sample (Ordinary) Sign Test: Ordinal

One of the oldest nonparametric procedures, the Sign Test, has been

traced from the 1700s. The data are converted to a series of plus and minus

signs by subtracting the median or measure of interest from each observation.

The test evaluates the number of plus signs and minus signs.

Assumptions:

1. The variable of interest is measured on at least an ordinal scale.

2. The variable of interest is continuous. The n sample measurements

are designated by X1, X2,... ,Xn.

3. The sample is a random sample of independent measurements

from a population with a median M that is hypothesized to be the

median Mo.

Hypotheses:

Two-tailed: Ho: M = Mo, H^ M * Mo,

One-tailed: Ho: M > Mo .H,: M < Mo, or Ho: M < Mo, H;. M > Mo

Procedure:

1. State the null and alternative hypotheses.

2. Select a level of significance a.

3. Record the sign of the difference obtained by subtracting the

hypothesized median "Mo" from each sample value. (If the median

of the sampled population (M) is actually Mo then there will be

about the same number of plus signs as minus signs.)

4. If there is a sufficiently small number of plus or minus signs, reject

the null hypothesis.

This test is based on the binomial distribution where the probability for

a given type of sign is equal (p = .5). For the two-tailed test, the researcher

would reject Ho at the a level if the probability of observing as few or fewer of

the less frequently occurring sign in a random sample of size n is less than

or equal to a/2, i.e., (.025). For the one-tailed test, reject the Ho if the probability

of observing as few or fewer of the appropriate sign in a random sample of

size n is less than or equal to a, i.e., (.05). For the Ho of M < Mo, then with (X.-

Mo), Ho will be rejected if there are too many plus signs. For the Ho of M > Mo,

then reject the H if there are too many minus signs.
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Example: The value of the benefits package at an institution is 46% of the

salary package. Researchers want to answer the following question: Is the

value of the benefits package at the institution (as a % ofsalary) consistent

with that of similar institutions?

Let Mo = 46 (the institution's benefit %), Ho: 46%

Obs.(n,)

% (X,)

X,-46

1

25

2

22

3

45

4

34

5

39

6

23

7

15

8

36

9

44

10

46

0

11

50

+

Hypotheses (Two-tailed):

= Mo H1:M*Mo, a =.05

SPSS Output

SPSS Procedure:

Use data set: One Sample Sign Test

1. Nonparametric Tests

2. Binomial Test

3. Move Score to "Test Variable List"

4. Under "Define Dichotomy" - Choose

"Cut point" and enter 46

5. "Test Proportion" equals .50

6. Click "OK"

Binomial Test

score Group 1

Group 2

Total

Category

<=46

>46

N

10

1

11

Observed

Prop.

.91

.09

1.00

Test

Prop.

.50

Exact Sig.

(2-tailed)

.012

Conclusion: Reject the null

hypothesis (Ho: M = Mo) because

p=.012<.05.

Test results reveal that the

benefits package is not

consistent with similar institutions' benefits packages. Note: if one thought

initially the institution was higher (e.g. H^ M < Mo and Ho: M > Mo), this would

have given a rejection region if one had too many minus signs for (M-Mo). The

directional hypothesis would have given one-tailed rejection regions. The

researcher would have rejected the null at the significance level of .006 and

would have been very confident that the institution had a larger benefit package

than the similar institutions. The tie for observation (n10) is a problem and

most likely occurred because of rounding. The SPSS handles this with "<="

but another approach is to leave the observation out and to do the computation

with ten observations rather than eleven. For N > 12, the normal approximation

works well with an expected value of .5*n and a standard deviation of .5 *Tn.

Wilcoxon Signed Rank Test: Interval

The Wilcoxon Signed Rank Test is used to determine if a specific point

or hypothesized median could be the population median. It is "applied as a

one-sample median test by ranking the data and ... assigning a minus sign

or plus sign to each rank assigned to the datum" (Zar, 1984, p. 114). In

addition to the sign of the differences, this procedure uses magnitude of the

difference of each observation from a hypothesized median.

Assumptions:

1. The variable is continuous.
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2. The underlying or population distribution is symmetrical.

3. The scale of measurement is interval so that the observations can

be placed in rank order.

4. The sample is a random sample of independent measures from a

population with an unknown Median M that is compared with a

hypothesized median M .

Hypotheses:

Two-tailed: Ho: M = Mo, H^ M * Mo.

One-tailed: Ho: M > Mo, H1: M < Mo, or Ho: M < Mo, H,: M > Mo

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a

3. Subtract the hypothesized median from each observation. For

each observation find Q = X.-Mo. Eliminate any observation where

the difference is zero.

4. Rank the differences from smallest to largest without regard to

the signs (absolute value). If two differences are the same size,

assign them the average of the two ranks

5. Assign each rank the sign (+ or -) of the difference (D.).

6. Obtain the sum of the ranks with positive signs; call itT+. Obtain

the sum of the ranks with negative signs; call it T-.

7. Compare the two "sum of ranks." If they are sufficiently different,

then reject the hypothesis.

As noted above, unlike the previous Sign Test which uses the direction

of the difference and not the magnitude of the difference, the Wilcoxon Signed

Rank Test uses the magnitude in an ordinal measure as well as the difference.

This increase in information causes the Wilcoxon Signed Rank Test to have

much more statistical power than the Sign Test. It is assumed that the

underlying population from which the sample is drawn is symmetrical about

the hypothesized median Mo leading to the assumption that the difference

(X-Mo) is symmetrical about zero. In this case, the median will equal the

mean of the data.

Example: For the observations shown, researchers want to answer the

following question: Does the median IQ of the population from which these

observations were drawn equal 107?

Hypotheses (Two-tailed): Ho: M = Mo, H^ M * Mo. a = .05

Conclusion: Fail to reject the null hypothesis (Ho: M = Mo) because p= .451

>.O5.
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Observation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

IQ

99

100

90

94

135

108

107

111

119

104

127

109

117

105

125

D=X-M

-8

-7

-17

-13

+28

+1

0

+4

+12

-3

+20

+2

+10

-2

+18

Rank

7

6

11

10

14

1

5

9

4

13

2.5

8

2.5

12

Signed Rank

-7

-6

-11

-10

+14

+1

+5

+9

-4

+13

+2.5

+8

-2.5

+12

T+ = 64.5

T- =40.5

SPSS Procedure:

Use data set: Wilcoxon Signed

Rank Test

1. "Nonparametric Tests"

2. "2 Related Samples Tests"

3. From "Variable List" select

Ho and iq1 and move to

"Test Pair(s) List"

4. Under "Current Selections",

"Variable 1" equals Ho and

"Variable 2" equals iq1

5. Under "Test Type" choose

"Wilcoxon"

6. Click "OK"

Based on these results

we are unable to reject the

null hypothesis that the

median IQ of the population

is 107 for (a = .05). Note that

SPSS drops the observation

if there is a tie with the

hypothesized median of

107. Also the subtraction

occurs based on the

sequence of variables in the

data set where the first

variable is subtracted from

the second.

Ranks
SPSS Output

IQ- Ho Median Negative Ranks

Positive Ranks

Ties

Total

N

6(a)

8(b)

1(c)

15

Mean

Rank

6.75

8.06

Sum of

Ranks

40.50

64.50

a. IQ < Ho Median

b. IQ > Ho Median

c. IQ = Ho Median

Test Statistics (b)

z

Asymp. Sig. (2-

tailed)

IQ - Ho Median

-.754(a)

.451

a. Based on negative ranks.

b. Wilcoxon Signed Ranks Test

Tests of Location: Two Independent Samples

Median Test: Ordinal

The Median Test is used when evaluating whether two independent

samples with the same distribution have the same median. It is similar to the

signed test in that it uses only the direction of differences of observations for

the two samples. This statistic considers the variation in both samples and

determines the likelihood that the two samples come from the same distribution

with the same median. This test considers a specific number (a) and determines

the proportion of the two samples that are above and below the specific
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number. Though it does not have to be so, the number (a) is generally the

median of the two combined samples.

Assumptions:

1. The data consists of two independent random samples.

2. The first sample is from a population with median Mx and the

second sample is from a population with the median My.

3. The measurement scale employed is at least ordinal.

4. The variable of interest is continuous.

5. The two populations from which the samples were drawn have the

same shape.

6. If the two populations have the same median, then the probability

p that an observation will exceed the specific number (a) is the

same for each sample.

Hypotheses:

Two-tailed: Ho: Mx = M H^ Mx * M

One-tailed: Ho: Mx > My, H1: Mx < My, or Ho: Mx < My, H,: Mx > My

Procedure:

1. Select and state the hypotheses.

2. Select the level of significance a.

3. Select a specific number a. In general most select the grand

median of the two combined samples because this is more likely

to give about half above and half below for each group.

4. Compute the proportion of observations in each sample that are

above and below the specific number a.

5. Compare these proportions, and if they are sufficiently different in

the two samples, conclude that the samples do not have the same

median.

Given we compute a grand median; we can use this for the a. We

would then expect about half the observations from each sample to fall above

the median and about half to fall below. Also note that results of counts are

placed into a 2 x 2 contingency table as shown below. If a table has frequencies

that are too small for a Chi-Square analysis, then the Fischer's exact test

can be used (Zar, 1984, p. 71).

Definitions:

Relationship to Median

Above

Below

Total

X

a

c

a+c = ni

Y

b

d

b+d

Total

a+b

c+d
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Example: The Department Head for English is concerned about recruiting

new faculty and has asked Institutional Research to determine if a problem

exists. There are thirty-two faculty members in his department and there are

sixteen faculty members in a comparison department at another university.

Researchers want to answer the following question: fe the median faculty

salary for the Department of English at this university equal to the median

faculty salary at the closest comparison institution's department?

Relationship to

Median Salary

Above

Below

Total

Your Institution

(English Department)

12

20

32

Comparison Institution

(English Department)

12

4

16

Total

24

24

48

Hypotheses (Two-tailed): Ho: Mx = MyJ H^ Mx * My. a = .05

SPSS Output

Relationship to Median

Count

Relationship

to Median

Total

Above

Below

Institution

Your

Institution

12

20

32

Comparison

Institution

12

4

16

Total

24

24

48

Chi-Square Tests

Pearson Chi-Square

Continuity

Correction(a)

Likelihood Ratio

Fisher's Exact Test

Linear-by-Linear

Association

N of Valid Cases

Value

6.000(b)

4.594

6.207

5.875

48

df

1

1

1

1

Asymp. Sig.

(2-sided)

.014

.032

.013

.015

Exact Sig.

(2-sided)

.030

.030

.030

.030

Exact Sig.

(1-sided)

.015

.015

.015

.015

Conclusion: Reject the null hypothesis Ho: Mx = My because p = .03 < .05.

Based on the results of the Fisher's Exact Test, one would conclude
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SPSS Procedure:

Use data set: Median test confirmation

Note: These are summarized data and as such you have to weight

the data

1. Select "Data" on the main menu

2. From "Weight Cases" select "Weight Cases by"

3. Under "Frequency Variable" select Salaries from the

"Variable List"

4. Click "OK"

5. In the lower right hand corner of the screen you should

see "Weight On."

Analysis Procedure:

1. Under "Analysis" select "Descriptive Statistics"

2. Crosstabs"

3. From the "Variable List" move" Relationship to Median

to the "Rows" category

4. From the "Variable List" move Institution to the "Columns"

category

5. Click "Statistics" Tab at bottom of window

6. Select "Chi Square"

7. Click "Continue"

8. Under "Cell Display, Counts" choose "Observed"

9. Click "Continue"

10. Click "OK"

that the salaries in the

department are not

comparable to those at

the other institution. In

this case, there are too

many salaries at the

first institution below

the grand median of the

combined distribution

of salaries.

Note that this

test can also be

obtained from

(NonparametrioK

Independent Samples)

where one can check

the Median option, and

identify the grouping

variable as Institution,

and identify that it has

the value of "1" or "2".

Mann-Whitney U: Ordinal

The ability to consider the magnitude of the data as well as their direction

once again provides a more powerful statistical test. When observations are

given a rank within the data set that combines both samples, the average

rank of the observations in one sample can be compared with the average

rank of the observations in the other sample. If both samples have the same

median, they should have approximately the same average rank.

The Mann-Whitney Test is a nonparametric test that is analogues to

the two-sample parametric t-test (Zar, 1984). Its assumptions are based on

the likelihood of various dichotomous patterns occurring when observations

are ordered. If one can assume that the data are measured on any ordinal

scale then the analyst can use rank statistics as a basis for the assumptions.

The distribution of these ranks can then be used to compute the Mann-

Whitney U. As will be seen later, the use of ranked statistics generalizes to

the situation of where there are more than two samples. This is similar to

how the Analysis of Variance generalizes to multiple samples while the t-test

is restricted to two samples.

Assumptions:

1. The data consist of a random sample of observations from population

1 with unknown median Mxand another random sample of

observations from population 2 with unknown median My.

2. The two samples are independent.

19



3. The variable observed is a continuous random variable.

4. The measurement scale employed is at least ordinal.

5. The distribution functions of the two populations do not differ. This

means they have homogeneous variance.

Hypotheses:

Two-tailed: H : M = M , ^ M * M

yOne-tailed:Ho: Mx> My, H,: Mx< Myy, or Ho: Mx < My, H,: Mx > My,

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. Assign a rank to all of the observations regardless of their group

membership.

4. Compute the average rank for each group.

5. Compare the average ranks and evaluate the likelihood that a

difference of the resulting magnitude and direction could occur by

chance.

Example: Twenty-seven faculty members at an institution have been given a

survey to determine their satisfaction with current course technology.

Seventeen of the faculty members are in the Mathematics department and

ten are in the History department. A high score represents a high level of

satisfaction, with the highest level of satisfaction given a rank of one.

Researchers want to answer the following question: Is there a difference in

the satisfaction scores of the

faculty in the Mathematics »-«- SPSS Output

departmentand the faculty in

the History department?

Hypotheses (Two-tailed): H o:

Mx = My,H1:Mx^Mya=.O5

Ranks

Department

Satisfaction Mathematics

Score History

Total

N

17

10

27

Mean

Rank

17.44

8.15

Sum of

Ranks

296.50

81.50

SPSS Procedure:

Use data set: Mann-Whitney test

1. "Nonparametric Tests"

2. "2-lndependent Samples Tests"

3. Under "Test Variable List" select Satisfaction

Scores from the "Variable List"

4. Under "Grouping Variable" select Department

from "Variable List"

5. Under "Defined Groups": "Group 1" equals

1 and "Group 2" equals 2

6. Click "Continue"

7. Under "Test Type" select "Mann-Whitney U"

8. Click "Ok"

Test Statistics (b)

Mann-Whitney U

Wilcoxon W

Z

Asymp. Sig. (2-tailed)

Exact Sig. [2*(1-

tailed Sig.)]

Satisfaction

Score

26.500

81.500

-2.938

.003

.002(a)

a Not corrected for ties,

b Grouping Variable: Department
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Conclusion: Reject the null hypothesis (Ho: Mx = M ) because p= .002 < .05.

Results of the tests indicate that there is a difference in the satisfaction

levels of the two faculties (p = .002). Please note that this is a nondirectional

test (2-tailed) and does not answer questions such as whether the History

faculty are more satisfied than the Mathematics faculty or vice versa. If using

a directional hypothesis, the null hypothesis would be rejected given the (p=

.001) level using a one-tailed level of significance (p = .05). Note: The same

results can be obtained if the 'Test Variable" were Ran/cinstead of Satisfaction

Score. It is also interesting that tied ranks within a group do not make a

difference in the statistic. However, a tie across groups will make a difference

and is typically handled with the average rank procedure.

Tests of Location: Two Related Samples

McNemar Test: Nominal

One basic question that researchers might ask is whether or not a

group has changed over time or as a result of some experience. For the

case where there is a proportion for a group before and after some activity

and the outcomes are dichotomous, a test for dependent portions should be

used. The proportions being compared are based on just one group, or two

related groups, rather than two independent groups. This is equivalent to

asking whether the number that changed from one category to the other, for

example from passing to failing, is the same as the number that changed in

the other direction, from failing to passing. This reduces to a binomial test

where the data can be summarized in a 2 x 2 contingency table. The changes

in one direction are compared to total changes, where under the null

hypothesis, an equal number of changes will be noticed in both directions.

Assumptions:

1. The data consists of n randomly selected subjects measured at

two points in time or randomly selected pairs of subjects where

the subjects are paired on some characteristic or set of

characteristics.

2. The measurement scale is nominal with four categories that can

be represented as yes-yes, yes-no, no-no, and no-yes for the two

measures of each pair.

3. Let p1 be the proportion of individuals with a "yes" characteristic

on the first measure and p2 be the proportion of individuals with a

"yes" characteristic on the second measure.

4. The treatment does not change the proportion.

Hypotheses:

Two-tailed: Ho: p1 = p2, H^ p^p2

One-tailed: Ho: p1 < p2, H,: p, > p2, or Ho: p1 > p2, H^ p1 < p2
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Procedure:

1. State the null and alternative hypotheses.

2. Select a level of statistical significance a.

3. Arrange the group of observations in the 2 x 2 contingency table.

4. Compare the proportions to see if they are sufficiently different to

reject the null hypothesis.

Example: Students are

administered two parallel

forms of a test. The first test

is given prior to participation

in a math orientation program

designed to improve success

in basic math courses; the

second following completion

of the orientation program.

Researchers want to know

the answer to the following

question: Is participation in

the orientation program

related to the proportion of

students who pass the

test?

Hypotheses (Two-tailed):

Ho: Pi = p2, H,: p1 * p2

a =.05

SPSS Output

No Orientation * Orientation

Count

Before Orientation Passed

Failed

Total

After Orientation

Passed

26

7

33

Failed

15

37

52

Total

41

44

85

Chi-Square Tests

McNemar Test

N of Valid Cases

Value

85

Exact Sig. (2-sided)

.134(a)

a. Binomial distribution used.

SPSS Procedure:

Use data set: McNemar Test for Two Related Samples

Note: These are summarized data and as such you have to weight

the data.

1. Select "Data" from the main menu

2. From "Weight Cases" select "Weight Cases by"

3. Under "Frequency Variable" select Number of Students from

the "Variable List"

4. Click "OK"

5. In the lower right hand comer of the screen you should see

"Weight On."
Conclusion: Fail to reject

the null hypothesis (Ho: p1

= p2) because p = .134 >

.05.

Because the

significance level is greater

than .05, researchers

cannot conclude that

participating in orientation is

related to passing Math 101.

In other words, there appears to be no significant difference in the performance

on the posttest following participation in the orientation session.

Sign Test for Matched Pairs: Ordinal

Sometimes a researcher has a set of data that represents pairs of

measures across a set of individuals or activities. One of the basic questions

Analysis Procedure:

1. "Descriptive Statistics"

2. "Crosstabs"

3. From "Variable List" move No Orientation to the "Rows"

category

4. From "Variable List" move Orientation to the "Columns"

category

5. Click "Statistics" Tab at bottom of window

6. Select "McNemar"

7. Click "Continue"

8. Click "OK"
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about such pairs of observations is: What is the relationship of one set of

scores to the other set of scores? The Sign Test for Matched Pairs is a

useful technique for answering this question. It enables the researcher to

examine the differences between the pairs of scores and determines if one

set of scores is larger than the other. It is an extension of the One Sample

Sign Test described in the previous section. It is similar to a parametric

paired "t-test" except that, as a nonparametric technique, it does not require

the assumptions of normal distribution or linear scale.

Assumptions:

1. The data consist of a random sample of n pairs of measures where

the pairing is based on some set of characteristics. The variable

of interest is X. - Y. = D. where D. has a + or - sign. The parameter

about which we make inferences is Md. This is the median of the

differences between X and Y for the n pairs.

2. The n pairs of observations are independent from the other pairs of

observations.

3. The measurement scale is at least ordinal within each pair so the

largest can be determined.

4. The variable under study (D.) is continuous which means there are

no ties between the pairs of measures.

Hypotheses:

Two-tailed: Ho: Md = 0, H,: Md * 0.

One-tailed: Ho: Md < 0, H^ Md > 0 , or Ho: Md > 0, H^ Md < 0

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. For each pair, record the sign of the difference obtained by

subtracting Y. from X. or by otherwise determining dominance.

4. Eliminate observations tied across the two measures.

5. If the two sets of scores come from the same population, there

should be about as many plus signs as minus signs.

Example: There are ten departments in the College of Letters and Sciences.

The Dean is interested in determining whether the college has a balanced

instructional activity between Fall and Spring semesters. Instructional activity

is measured as SCH/Faculty FTE. Researchers want to answer the following

question: Based on SCH/Faculty FTE ratios for Fall and Spring semesters,

do the departments have a differentproductivityperFTE Facultymemberin

the Spring rather than the Fall?
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The following information is available:

Term

Fail

Spring

Sign (Md)

Dpt1

463

523

+

Dpt2

462

494

+

Dpt3

462

461

-

Dpt4

456

535

+

Dpt5

450

476

+

Dpt6

426

454

+

Dpt7

418

448

+

Dpt8

415

408

-

Dpt9

409

470

+

Dpt10

402

437

+

Frequencies

spring - fall

a spring < fall

b spring > fall

c spring = fall

SPSS Output

Negative Differences(a)

Positive Differences(b)

Ties(c)

Total

N

2

8

0

10

SPSS Procedure:

Use data set: Sign Test _two related samples

1. "Correlate"

2. "Bivariate Correlations"

3. From "Variable List" move fall and spring to

"Variables" window

4. Under "Correlation Coefficients" select

"Spearman"

5. Under "Test of Significance" select

"Two-tailed"

6. Click "Flag significant correlations"

7. Click "OK"

Exact Sig. (2-tailed)

spring - fall

.109(a)

a. Binomial distribution used,

b. Sign Test

Test statistics (b) Hypotheses (Two-Sided): Ho: Md = 0,

H^M^O, a = .05

Conclusion: Fail to Reject the null

hypothesis (Ho: Md = 0) because

p=.109>.05.

The hypothesis was stated as a two-tailed test (Ho: Spring = Fall).

There is not sufficient evidence to reject the statement that instructional

activity is the same in the Spring as in the Fall.

Wilcoxon Matched Pairs Signed-Rank Test

The Wilcoxon Matched Pairs Signed-Rank Test procedure is designed

to determine if medians of two related measures are equal. Where the

preceding Binomial Sign Test for Matched Pairs only required an ordinal

scale within each pair, sometimes the analyst is able to assume that the

data are measured on an interval scale. If the data can meet this additional

assumption, a test that considers not only the direction of a difference but

also the magnitude of the difference between pairs can be used. This increase

in statistical power means that it will be much more likely to reject a null

hypothesis when, in fact, it is false. For example, if the data from the preceding

example for the Sign Test is used in this test, the researcher would be able to

reject the Null Hypothesis (p = .006). In addition to the assumption that the

data are measured on an interval scale, this test requires that the population

of differences is symmetrical about their median.

In this test, the differences are first ranked based on their absolute
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value. Signs are then assigned to the ranks based on the sign of the difference.

The sum of the positive ranks is compared to the sum of the negative ranks.

If the two distributions have the same median then the sum of the positive

ranks should be about the same as the sum of the negative ranks.

This test is similar to the one sample Wilcoxon Signed Ranked Test

just as the parametric paired t-test is similar to the one sample t-test. It is

also helpful to remember that when the paired-sample t-test is applicable,

the Wilcoxon paired sample test is applicable (Zar, 1984, p. 153).

Assumptions:

1. The data for the analysis consists of n values of the difference

D^Y.-X.. Each pair of measurements is taken on the same subject

or on subjects that have been paired on one or more attributes.

2. The sample of pairs is random with respect to the overall population

of pairs.

3. The differences represent observations on a continuous random

variable.

4. The distribution of the population of differences is symmetric about

their median Md.

5. The differences are independent.

6. The differences are measured on an interval scale.

Hypotheses:

Two-tailed: Ho: Md= 0, H^ Md * 0

One-tailed:Ho: Md < 0, H,: Md > 0, or Ho: Md > 0, H,: Md < 0

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. For each observation find D, = Y, - X..

4. Eliminate any observation where the difference is zero.

5. Rank the differences from smallest to largest without regard to

the signs (absolute value). If two differences are the same size,

assign them the average of the two ranks.

6. Assign each rank the sign (+ or -) of the difference (D,).

7. Obtain the sum of the ranks with positive signs; call it T+. Obtain

the sum of the ranks with negative signs; call it T-.

8. Compare the two sums of ranks. If they are sufficiently different,

then reject the hypothesis.

Example: A faculty member was concerned about the effect of stress on the

learning situation for a class of nine students. She decides to enroll the

students in a personal time management class. She administers parallel

forms of a Stress Test before and after the time management class and
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obtains the following scores. A high score represents a greater degree of

stress. Researchers want to answer the following question; Does a personal

time management class significantly alter the score ofstudents on a Stress

Test? (High scores reflect high stress, fifty items, and interval stress measure.)

The following information is available:

Student

1

2

3

4

5

6

7

8

9

Before Class (X.)

33

17

30

25

36

25

31

20

18

After Class (Y,)

21

17

22

13

33

20

19

13

9

D.-Yj-X,

-12

0

-8

-12

-3

-5

-12

-7

-9

Signed Rank D.

-7

Omit

-4

-7

-1

-2

-7

-3

-5

Ranks

after - before

SPSS Output

Negative

Ranks

Positive

Ranks

Ties

Total

N

8(a)

0(b)

1(c)

9

Mean

Rank

4.50

.00

Sum of

Ranks

36.00

.00

a. after < before

b. after > before

c. after=before

Test Statistics (b)

Z

Asymp. Sig.

(2-tailed)

after -

before

-2.533(a)

.011

a. Based on positive ranks.

b. Wilcoxon Signed Ranks Test.

SPSS Procedure:

Use data set: Wilcoxon Matched Pairs Test

1. "Nonparametric Tests"

2. "2 Related Samples Tests"

3. From "Variable List" select before and after

and move to "Test Pair(s) List"

4. Under "Current Selections", "Variable 1"

equals before and "Variable 2" equals after

5. Under "Test Type" select "Wilcoxon"

6. Click "OK"

Hypotheses (Two-tailed):

M, * 0 a = .05

Conclusion: Reject the null

hypothesis (Ho: Md= 0) because p =

.011 < .05.

Results of a two-tailed test

suggest that participation in the time

management class alters student stress as measured by this instrument

(p = .011). If using a one-tailed hypothesis, the order of the variables in the

columns will impact the choice of directional tests. Interpretation thus becomes

more difficult. Nevertheless, the negative Z score (based on subtraction of

the "Before" score from the "After" score) suggests that stress was greater

before participation in the class. This one-directional hypothesis can be
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tested (Ho: Md > 0, H1: Md < 0), and the decision will be made to reject the null

hypothesis (p=.005).

Tests of Location: Three or More Independent Samples

Median Test: Ordinal

When there are more than two groups of independent measures, there

are several tests to determine if the multiple groups could have come from

the same underlying distribution. One of these methods is an extension of

the Median Test If the groups came from the same underlying population,

they should all have about the same portion of numbers above some selected

number (6). This number is often selected to be the grand median of the

combined groups because this tends to give a balance of observations above

and below the number. The Median Test also works if responses are above or

below some opinion or position such as Agrees/Disagrees or Likes/Dislikes.

The Median Test uses the direction of the differences. Its exact likelihood is

computed from a multivariate extension of the hypergeometric distribution. If

there are at least twenty-five observations and at least five for each group, it

can be approximated as a %2 Test of Independence with a 2 x k matrix. This

procedure is discussed later in this chapter as the Chi Square Test of

Independence forTwo Independent Samples. More information can be found

in Gibbons (1971, p. 196-198) or Sheskin (1997, p. 232-233).

Kruskal-Wallis One-way Analysis of Variance by Ranks

If the observations reflect an ordinal scale, they add information on both

the magnitude of ranks as well as direction. This additional information can

permit use of a much more powerful test called the Kruskal-Wallis One-way

Analysis of Variance by Ranks. This test extends the Mann-Whitney U from

two groups to more than two groups, much as the ANOVA extends the t-test.

It does require a continuous scale where the Median Test only requires a

dichotomy.

Assumptions:

1. The data for analyses consist of k random samples of sizes

n^n^ng,...^.

2. The observations are independent both within and among samples.

3. The variable of interest is continuous.

4. The measurement scale is at least ordinal.

5. The populations are identical except for a possible difference in

location for at least one population.

Two-tailed: Hj R1 = R2= R3 = ...Rk

Hypotheses:

wo-taik

^ At least one of the equalities is violated.
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Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. Rank all of the observations in a combined ranking with 1 being

the smallest number.

4. Compute the average rank for each group. If the groups come

from the same population they should have about the same average

rank.

5. If there is a significant overall difference, use a multiple comparisons

procedure to look at where the difference occurs.

Example: A researcher is examining the applications for financial aid given

to students in the various departments for the colleges of Arts & Sciences,

Education, and Engineering. There are ten departments in Arts & Sciences

and six each in Education and Engineering. All of the departments have

about the same number of majors. Researchers want to answer the following

question: Are there differences in the median number of financial aid

applications by college?

The following information is available:

SPSS Output

Observation

1

2

3

4

5

6

7

8

9

10

Sum of Ranks

Arts & Sciences

Apps

262

307

211

323

454

339

304

154

287

356

Rank

4

7

3

8

14

9

6

1

5

12

69

Education

Apps

465

501

455

355

468

362

Rank

16

18

15

11

17

13

90

Engineering

Apps I

343

772

207

1048

838

687

Rank

10

20

2

22

21

19

94

Number of

Applicants

College

Arts and Science

Education

Engineering

Total

N

10

6

6

22

Mean Rank

6.90

15.00

15.67

Test statistics (a, b)

Chi-Square

Df

Asymp. Sig.

Number of

Applicants

9.232

2

.010

a. Kruskal Waliis Test

b. Grouping Variable: College

Hypotheses: Ho: R1 = R2= R3;

H^ At least one of the equalities is violated.

a = .05

Conclusion: Reject the null hypothesis (Ho:

R1 = R2 = R3) because p = .010 < .05. At

least one of the equalities is violated.

The significance level of less than .05

suggests that there is a difference between

SPSS Procedure:

Use data set: Kruskal-Wallis One-way

ANOVA by Ranks

1. "Nonparametric Tests"

2. "K Independent Samples"

3. From "Variable List" move Number of

Applicants to "Test Variable List"

4. From "Variable List" move College to

"Grouping Variable"

5. Click "Define Range"

6. "Minimum" equals 1 and "Maximum"

equals 3

7. Click "Continue"

8. Under "Test Type" click "Kruskal-Wallis H"

9. Click "OK"
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the medians of at least two of the groups. To determine where the difference

is, a multiple comparisons test is conducted.

Multiple Comparisons Test

The test of statistical significance of the difference between groups is

based on the absolute difference in ranks. Given the absolute difference in

average ranks of two groups, i and j, is the difference greater than

(zb)* VNtN+IMI/r^+i/n'yiq.
The colleges of Arts & Sciences and Education can be used to

demonstrate.

The required absolute difference between the first and second group is:

Difference = (1.96)* ^ (22(22+1 )*(1 /10+1 /6)/12) or 6.57.

The 6.57 can then be compared to the difference in the average ranks of

these two groups, which is 1(69/10)-(90/6)I = 8.1. Because 8.1 is greater

than 6.57, it can be concluded that the difference between these two medians

is significant (Sheskin, 1997, p. 402).

Tests of Location: Three or More Related Samples

Cochran Q: Nominal

When there are three or more related samples with the dependent variable

evaluated on a dichotomous measure, Cochran's Q can be used to determine

if there is a difference between two or more of the dependent measures. This

situation might occur in cases where the dependent measures are three or

more classes taken by a cohort of students. The question of interest becomes

whether there is a significant difference between the courses in the proportion

of students who pass each course. This is an extension of the McNemar

Test to a situation where there are more than two dependent measures.

Assumptions:

1. The data consist of a set of n observations that are repeated on

two or more dependent measures. The data can be thought of as

a table where the rows are the sample and the columns are the

Treatments.

2. The variable of interest is dichotomous.

3. The proportion of observations that are in a specific category is pk

for the kth category.

Hypotheses: Ho: p1 = p2 = p3 =...= pk

H^ At least one of the equalities is violated

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.
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3. Score each subject for each measure as a dichotomy.

4. Compute the proportion in each group who were in the "successful"

or dominant group. (If the groups come from the same population

they should have about the same proportion of successes.)

5. If there is a significant overall difference, use a multiple comparisons

procedure to examine where the difference occurs.

Example: The newly arrived Provost of an institution wants to determine if

student success is linked to specific types of courses. She believes this

can be partially evaluated by determining whether there is a difference in the

pass rate for a cohort of students enrolled in math, English, and chemistry

courses. Researchers want to answer the following question: Is there a

significant difference between the courses in the proportion ofstudents who

pass each course?

The following information is available:

Hypotheses: H^p^p^p;

H1: At least one of the equalities is

violated

a =.05

Conclusion: Reject the null

hypotheses (Ho: p1 = p2 = p3)

because p = .027 < .05.

Results indicate that the null

of equal proportions should be

rejected (p = .027) and that there

is a difference between at least two

of the groups. Though the multiple

comparisons procedure has not

Student

1

2

3

4

5

6

7

8

9

10

11

12

Math

1

0

1

0

0

0

0

0

1

0

0

0

English

1

1

1

1

1

1

0

1

1

1

0

0

Chemistry

0

0

0

1

0

1

0

0

0

0

0

1

Where 0 = Failed, 1 = Passed

Frequencies
SPSS Output

Math

English

Chemistry

Value

Failed

9

3

9

Passed

3

9

3

Test Statistics

N

Cochran's Q

df

Asymp. Sig.

12

7.200(a)

2

.027

a. 1 is treated as a success.

SPSS Procedure:

Use data set: Cochran's Q

1.

2.

3.

4.

5.

Nonparametric Tests

K-Related Samples

Move Math, English, and

Chemistry from the "Variables

List" window to the "Test

Variables" window

Under "Test type" check

Crochan's Q

Click "OK"
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been performed in this case, visual evidence suggests that the students are

much more likely to pass English than they are to pass the other two courses.

As with the ANOVA alternative, there are ways to look at the pair-wise

comparisons to include using pair-wise application of the McNemar Test.

These are described in the previously mentioned Handbook by Sheskin (1997,

p. 472-474).

Friedman Two-Way Analysis of Variance by Rank: Ordinal

While the sign test for matched pairs provides a way to test the

comparability of paired observations for each subject, there are frequently

three or more observations for each subject. In this situation, it is appropriate

to use the Friedman Two-Way Analysis of Variance by Rank. In this test, the

different objects are rank-ordered based on some ordinal characteristic within

the set of objects. For example, programs can be ranked in terms of how

students rate them on desirability. Institutions can also be the samples or

units of measure, and the size of their academic departments can be ranked

for a set of academic departments. The Friedman Two-Way Analysis of

Variance by Rank is generally more powerful than the Cochran's Q because

it uses the magnitude of differences as well as direction of differences. By

contrast, Cochran's Q uses only values of a dichotomous variable to denote

the direction of the differences.

Assumptions:

1. The data consist of b mutually independent samples of size k.

The data can be thought of as a table where the rows are the

individuals in the sample and the column is the item being ranked.

2. The variable of interest is continuous. This means there are no

ties.

3. There is no interaction between the sample and the items being

ranked.

4. Each subject can rank order the items based on some order of

magnitude. The average rank of each item is Mk.

Hypotheses: Ho: M1 = M2 = M3 =...= Mk

H^ At least one of the equalities is violated.

Procedure:

1. Select and state the hypotheses.

2. Select the level of significance a.

3. Rank each item in a row based on some ordinal characteristic.

4. Compute the average rank assigned to each object across the

samples. (If each object came from the same population they

should have about the same proportion of successes.)

5. If there is a significant overall difference, use a multiple comparisons

procedure to determine where the difference occurs.
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Example: The University President is interested in grant expenditures in

specific departments and, in particular, whether the pattern of grant

expenditures is equal to the expenditure patterns of the same departments

at other institutions. He has asked Institutional Research to evaluate the

situation. Researchers want to answer the following question: Is there a

difference in the median ranking ofgrant expenditures for the physics, geology

chemistry, and biology departments amongyour institution and seven peer

institutions?

The following information is available:

Institution

1

2

3

4

5

6

7

8

Total

Physics Geology Chemistry

1

2

3

1

3

2

1

1

14

4

3

2

2

2

1

2

3

19

3

1

4

3

4

4

4

4

27

Biology

2

4

1

4

1

3

3

2

20

Note: While the underlying measures (grant

expenditures) may be ratio or interval, you must rank

for each observation measures within the separate

institutions.

Ranks

Physics

Geology

Chemistry

Biology

SPSS Output

Mean Rank

1.75

2.38

3.38

2.50

Test Statistics (a)

N

Chi-Square

df

Asymp. Sig.

8

6.450

3

.092Hypotheses (Two-tailed): Ho: M1 = M2 = M3

=--= M8; a. Friedman Test
H1: At least one of the equalities is violated.

Fail to reject the null

= M3=...=

Conclusion:

hypothesis (Ho: M1 = M,

because p = .092 > .05.

Results of the tests suggest that

there is no significant difference in the

rankings of departments on grant

expenditures among the institutions of

interest. As such, there is no reason to

perform a multiple comparisons test to

determine which institutions differ. Also keep in mind that the findings do not

suggest that there are no differences with respect to amounts spent by

departments among the institutions.

If the null hypotheses had been rejected (a significant difference was

SPSS Procedure:

Use data set: Friedman Two-Way

ANOVAbyRank

1. "Nonparametric Tests"

2. K-Related Samples

3. From "Variable List" move all

variables to the "Test Variables"

window

4. Under "Test Type" choose "Friedman"

5. Click "OK"
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found in the above test), one would have concluded that there are some

inequalities for which the differences are statistically significant. The difference

between ranks can be tested using: IR.-R.I>= zb*V (b*k*(k+1)/6). Use p = a/

[k(k-1)] for the level of a and obtain z for the probability level p from the normal

distribution table, where b = observations and k = treatments or measures

(Sheskin, 1997, p. 458-462).

Goodness of Fit: One Sample

Chi Square Goodness of Fit Test: Nominal

Sometimes the purpose of a research project is to determine if the

frequencies for a set of categories are reasonably similar to what one would

expect by chance when the frequencies come from a known distribution. In

this case, if the categories are nominal —that is they have no natural order

— then the appropriate test is called the Chi Square Goodness of Fit Test

This test is based on the Chi Square distribution. If there are k categories

with specified numbers in the various cells, the Chi Square distribution of

interest is the one which has (k-1) degrees of freedom. The Chi Square test

statistic is computed as: %2 = I[(OfE)2 /E.], where O is the observed frequency,

E is the expected frequency, and i is the category.

Researchers using the Chi Square should be aware of several caveats.

The first is that the expected values of the cells need to be moderately large.

One rule of thumb is that no cell should have expected values of less than

one and 20% of the cells should not have values less than five. Frequencies

that are too small tend to inflate the Chi Square, increasing the likelihood of

rejecting the null hypothesis. The traditional process for the case where

frequencies are small is to combine cells in some experimentally meaningful

manner. The second caveat is that in cases where frequencies are small and

there are only two categories, it may be appropriate to make an adjustment

to reduce the computed Chi Square before it is compared with the table

value. This is known as Yates' correction for continuity.

Assumptions:

1. The data available for analysis consist of a random sample of n

independent observations.

2. The measurement scale may be nominal.

3. The observations can be classified into rnon-overlapping categories

that exhaust all classification possibilities. The categories are

mutually exclusive. The number of observations falling into a given

category is called the observed frequency of that category.

Hypotheses:
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Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. Obtain the frequencies of the categories for the observed

distribution O.

4. Compute the expected frequencies based on f(x.)*N where N =

IOj, and f(x.) is the hypothetical distribution.

5. Calculate the %2 = £[(O.-E.)2 /EJ and compare to the value needed

to reject the null hypothesis.

Example: Students majoring in nutrition are required to select one of six

minors in the College of Arts and Sciences. Researchers want to answer the

following question: te the choice ofminors for undergraduate students majoring

in nutrition equally distributed among the six alternative programs in the

College ofArts and Sciences?

The following information is available:

Preferred

Minor

Math

English

Biology

Chemistry

History

Psychology

Total

Expected

Frequency

6

6

6

6

6

6

36

Observed

Frequency

12

6

1

3

11

3

36

SPSS Output
Preferred Minor

Math

English

Biology

Chemistry

History

Psychology

Total

Observed N

12

6

1

3

11

3

36

Expected N

6.0

6.0

6.0

6.0

6.0

6.0

Residual

6.0

.0

-5.0

-3.0

5.0

-3.0

Test Statistics

SPSS Procedure:

Use data set Goodness of Fit-One Sample

These are summarized data and as such you

have to weight the data.

1. Select "Data" from the main menu

2. From "Weight Cases" select "Weight cases by"

3. Under "Frequency Variable" select Observed

Frequency from the "Variable List"

4. Click "OK"

5. In the lower right hand comer of the screen you

should see "Weight On."

Analysis Procedure:

1. "Nonparametric Tests"

2. "Chi Square"

3. From "Variable Lisf move Preferred Minor to

"Test Variable List"

4. Under "Expected Range" select "Get from data"

5. Under "Expected Values" select "Values"

6. Enter 6 for each Minor (You should see six

6s in this window.)

7. Click "OK"

Chi-Square(a)

df

Asymp. Sig.

Preferred

Minor

17.333

5

.004

a 0 cells (.0%) have expected frequencies less than

5. The minimum expected cell frequency is 6.0.

Calculation:

%2=[(12-6)2 + (6-6)2

+ (11-6)2 + (3-6)2]/6

1 -6)2 + (3-6)2

X2 = 17.333 with 5 degrees of

freedom

Hypotheses: Ho: O. = E.;

a =.05
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Conclusion: Reject the null hypothesis (Ho: O. = E,) because p = .004 < .05.

The results suggest that the choice of minors for nutrition majors is not

equally distributed among the six programs from which students can choose.

Please observe that there is caution generated by SPSS concerning the

problem associated with the test if there are several cells with a low frequency.

If the observed frequency is 0, SPSS will delete the category, which can

cause an incorrect estimate.

Kolmogorov-Smirnov One Sample Test: Ordinal

The Chi Square Test uses only information about the number of

observations in each category. It does not consider situations where the

categories have a natural order. This means that the Chi Square Test is much

less likely to identify a difference between the observed frequency and the

expected frequency for ordinal categories. In order to take ordinal categories

into account, it is necessary to use the Kolmogorov-Smirnov One Sample

Test This test computes the difference between the cumulative observed

and expected frequencies and then compares the largest value of this

cumulative difference to what might be expected by chance. This test is

based on order statistics. While it requires a continuous distribution for its

derivation it can be computed on functions that are discrete, in which case it

becomes somewhat conservative. Its advantage over the Chi Square Test\s

that it can be computed on rather small frequencies where the Chi Square

Test requires rather large sample sizes. In addition, it is an exact test where

the Chi Square Test is actually a Chi Square distribution only as the sample

becomes very large.

Assumptions:

1. The data are measured on a continuous and ordinal scale.

2. The data consist of the independent observations X1f X2 ...Xn,

constituting a random sample of size n from some unknown

distribution.

3. At any given point, the absolute difference in the frequencies at

that point between what is observed and what is expected for a

cumulative distribution f(x) is represented by T..

Hypotheses:

where T. is the absolute difference between the expected cumulative

frequency and the actual cumulative frequency at point "i" and Tmax is the

largest difference that would be expected by chance.

H1:T.is>TmaxforsomeT.
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Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. Identify an expected distribution f(x).

4. Obtain the frequencies of the categories for the observed

distribution and create a cumulative distribution where the sum for

the category equals the sum of those frequencies plus frequencies

in all preceding categories.

5. Compute the expected frequencies for the categories of the

expected (hypothesized) distribution in a similar fashion.

6. Subtract the expected cumulative from the observed.

7. Determine if the absolute difference (T.) is greater than would be

expected by chance.

Example: Students entering your college are required to take a Math

Placement Test. Four hundred and six students took the exam prior to the

beginning of the Fall semester. The department head in mathematics is

concerned about the effectiveness of the placement program for class

scheduling purposes. He thinks the distribution of abilities should follow a

normal distribution. Researchers want to answer the following question: Are

the actual math placement scores of entering first year students normally

distributed?

The department head has also recorded the scores after rounding to an

integer and wants to know if that digit is normally distributed. Researchers

must also answer the second question: Are the math placement scores of

entering firstyearstudents recodedas an integer normally distributed?

Hypotheses (for both questions): Ho: T. is < Tm

SPSS Output

^ T. is > Tmax, a = .05

One-Sample Kolmogorov-Smimov Test

N

Normal Mean

Parameters(a,b) _.. _ . .
11 Std. Deviation

Most Extreme Absolute

Differences _ .,
Positive

Negative

Kolmogorov-Smimov Z

Asymp. Sig. (2-tailed)

Math Placement

Test

406

15.495

2.8210

.047

.047

-.032

.951

.326

Math Placement

Rounded

406

15.63

2.821

.101

.101

-.079

2.034

.001

SPSS Procedure:

Use data set: Test for Normality

1. "Nonparametric Tests"

2. "1-Sample K-S"

3. From "Variable List' move Math

Placement Test and Math Placement

Rounded to "Test Variable List"

4. Under "Test Distribution" select "Normal"

5. Click "OK"

a Test distribution is Normal,

b Calculated from data.

Question 1: Conclusion: Fail to reject the null hypothesis (Ho: T is = Tmax)

because p =.326 > .05).

Question 2: Conclusion: Reject the null hypothesis (Ho: T. is = Tmax) because

p=.001<.05.
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Failure to reject the null hypothesis associated with the first question

suggests that it can be concluded that the Math Placement scores are normally

distributed. By contrast, the null hypothesis associated with the second question

was rejected. This suggests, based on the rounded score, that the scores do

not come from a normal distribution (p = .001). It appears that the math test

scores represent a normal distribution while the rounded scores do not.

Goodness of Fit: Two Independent Samples

Kolmogorov-Smirnov Two Sample Test: Ordinal

If one wants to compare two distributions with each other, the

Kolmogorov-Smirnov statistic can be generalized from a one-sample test to

a two-sample test. In the latter case, the statistical test is computed by

comparing the empirical distribution functions of the two samples. As with

the one-sample case, the two-sample case is based on order statistics, and

it is necessary that the underlying distribution be continuous. Otherwise,

the test becomes somewhat conservative. The distributions must also be

measurements that reflect at least an ordinal scale.

Assumptions:

1. There are two distributions on a continuous and ordinal scale.

2. If the two distributions come from the same underlying population,

then the difference between their cumulative distributions will not

exceed some maximum amount. The cumulative distributions are

compared at each level instead of comparing one of the distributions

to a theoretical distribution.

Hypotheses:

Ho:Dm,niS^Dmax
where Dm,n = maxlSm(x) - Tn(x)l over values of x, Sm(x) and Tn(x) are

the two cumulative distributions, and Dmax is the largest difference that would

be expected by chance.

HrDm,niS>Dmax

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. Obtain the frequencies of the categories for the observed

distributions and create cumulative distributions where the sum

for the category equals the sum of those frequencies plus

frequencies in all preceding categories...

4. Subtract one cumulative from the other and determine the largest

difference.

5. Determine if the cumulative difference is greater than would be

expected by chance.
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Example: The Dean of the College of Arts and Sciences has observed varying

levels of participation in service work among faculty in the departments of

Mathematics and History. The Associate Dean suggested that this might in

some way be related to job satisfaction. In response, a survey was

administered to determine the job satisfaction of faculty in the two departments.

Researchers want to answer the question: Are the distributions of job

satisfaction scores between the faculty of the Math and History departments

equal?

SPSS Output

Frequencies

1 Department

Satisfaction Mathematics

Score
History

Total

N

17

10

27

Test Statistics (a)

Most Extreme Absolute

Differences „ ..
Positive

Negative

Kolmogorov-Smimov Z

Asymp. Sig. (2-tailed)

Satisfaction

Score

.706

.000

-.706

1.771

.004

SPSS Procedure:

Use data set: Mann-Whitney test

1. "Nonparametric Tests"

2. "2-!ndependent Samples Tests"

3. From "Variable List" move Satisfaction

Score to "Test Variable List"

4. From "Variable List" move Department

to "Grouping Variable"

5. Under "Defined Groups": "Group 1" equals

1 and "Group 2" equals 2

6. Click "Continue"

7. Under "Test Type" select "Kolmogorov-Smirnov Z'

8. Click "Ok"

a. Grouping Variable: Department

Hypotheses: Ho: Dmnis<Dm

rm,n

a =.05

Conclusion: Reject the null hypothesis (Ho: Dmn is = Dmax) because p= .004

< .05.

In this case, it does not seem to be reasonable to claim that these two

distributions come from a single underlying distribution. The null hypothesis

is rejected (p = .004). It should be recalled that when these data were used to

calculate the Mann-Whitney Test, the medians of the two distributions were

found to be significantly different (p < .003).

Measures of Association: Two Variables

Measures of association concern both the amount and direction of

association for multiple variables. They do not, in and of themselves, identify

the likelihood that the association occurred by chance. It should be noted

that association is not the same as agreement. For example, perfect

association may well go with perfect disagreement. In this case, some of the

measures will have negative signs.
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2x2 Associations (Biserial. Point Biserial. Phi Coefficient.

Techrachoric): Nominal

When the data are represented by one or two dichotomous variables,

the question concerns whether the dichotomies are true dichotomies or

whether the measures are continuous measures that were structured into

dichotomies. There are four primary measures of statistical association that

can be computed fortwo dichotomous variables. Definitions for these measures

are presented below. The distributions of all of these variables are assumed

symmetrical in that there is no causal order attributed to the measures.

When the data are represented by one continuous variable and the other

measure is a true dichotomous measure, this is computed as one would

compute the Pearson Product Moment Correlation, a parametric equivalent.

Types ofStatisticalAssociation for Two Dichotomous Variables:

• Biserial correlation coefficient— rbi

° For use when one variable is continuous and the other is a

dichotomous variable that reflects an underlying normal

distribution.

• Point biserial coefficient — rb

° For use when one variable is continuous and the other is a 'true1

dichotomous variable.

• Phi coefficient — q>

n For use with two 'true' dichotomous variables.

• Tetrachoric correlation coefficient—rtet

° For use with two artificial dichotomies where the variables have

underlying normal distributions. (See Ender, 2004)

In this chapter, we demonstrate the Phi (q>) coefficient. We present this

example as it uses the weakest set of assumptions. In other words, it makes

no requirement about the underlying distribution of scores. It should be noted

that in general it does not range from ± 1.0 but has a <pmax. It is computed

using the Pearson Product Moment Correlation formula.

Hypotheses:

Two-tailed: Ho: p = 0, H^ p * 0

One-tailed Ho: p < 0, H^ p > 0, or Ho: p > 0, H^ p < 0

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. Categorize the data into the four cells.

4. Compute the correlation.

5. Compare O to the value needed to reject the null hypothesis.
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Example: A faculty member in the Math Department is interested in gender

differences among students on successful outcomes, i.e., a passing score,

for Math 206. Data are available to examine these differences given that

those taking the Math 206 final exam are identified by gender. Researchers

want to answer the question: Is there a relationship between gender and

passing the Math 206 final examination?

SPSS Output
Gender*

Count

Gender

Total

Outcome Crosstabulation

Male

Female

Outcome

Passed

23

5

28

Failed

10

2

12

Total

33

7

40

Symmetric Measures

Nominal by Phi

Nominal

Cramer's V

N of Valid Cases

Value

-.014

.014

40

Approx.

Sig.

.928

.928

a Not assuming the null hypothesis.

b Using the asymptotic standard error assuming the null

hypothesis.

SPSS Procedure:

Use data set: Phi Coefficient

These are summarized data and as such you have to weight the

data.

1. Select "Data" from the main menu

2. From "Weight Cases" select "Weight cases by"

3. Under "Frequency Variable" select Number of Students from

the "Variable List"

4. Click "OK"

5. In the lower right-hand comer of the screen you should see

"Weight On."

Analysis Procedure:

1. "Descriptive Statistics"

2. "Crosstabs"

3. From the "Variable List" move Outcome to "Rows" window

4. From the "Variable Lisf move Gender to "Columns" window

5. Click "Statistics Tab"

6. Under "Nominal" select "Phi and Cramer's V"

7. Click "Continue"

8. Click "OK"

Hypotheses (Two-tailed): Ho: p = 0, Ht: p* 0; a = .05

Conclusion: Fail to reject the null hypothesis (Ho: p = 0) because p > .928 >

.05.

Results of the test suggest that there is no significant relationship

between successful outcomes for Math 206 and gender. Recall that the Phi

Coefficient is for use with two dichotomous variables, in this case "passing"

(1=passed; O=not passed) and "gender" (1=male; O=not male).

Chi Square Test of Independence - Two Independent Samples: Nominal

When there are two measures and both are categorical measures, one

of the most common of all nonparametric statistics is the Chi Square Test of

Independence. This test uses the Chi Square distribution to determine if two

variables are significantly related. It should be noted that this is a measure of

association and not agreement. Chi Square is computed by summing the

squared differences in observed and expected frequencies after dividing by

the expected frequency. The expected frequency is computed based on the

marginal frequencies. If f.^s the sum of the frequencies in the jth column and

f. is the sum of the frequencies in the ith row and N is the total number of

observations, then the expected frequency in the cell xy is E.. = (f .*fr)/N.

The computed %2has (c-1)*(r-1) degrees of freedom, where "c" is the

number of columns and V is the number of rows. The same cautions exist

for this test as for the earlier discussion of using the Chi Square distribution
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to test the similarity of a set of frequencies to a hypothesized distribution.

Small expected cell frequencies inflate the computed statistic.

Assumptions:

1. The data consist of a simple random sample of size n from some

population of interest.

2. The observations in the sample are cross-classified according to

two criteria, so that each observation belongs to one and only one

category of each criterion. The criteria are the variables of interest

in a given situation.

3. The variables may be inherently categorical, or they may be

quantitative variables whose measurements are capable of being

classified into mutually exclusive numerical categories.

Hypothesis: Ho:%2 = 0; H1 :%2 * 0.

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. Categorize the data into the cells.

4. Compute the %2 and the degrees of freedom.

5. Compare %2 to the value needed to reject the null hypothesis with

(c-1 )*(r-1) degrees of freedom.

SPSS Output Example: A
Parental Monthly Income * College major Crosstabulation ■ ,

researcher has

collected a data

set from the

entering first year

class that

includes their

intended major

and also the

income of their

parents. She

wants to answer

the question: Is

there a

relationship

between parental

income and the

college major

choice forentering

firstyearstudent?

Parental Monthly

Income

< $3,000

$3,000-$4,900

$5,000-6.900

$7.000-$9.900

$10,000 +

Total

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Count

Expected Count

Humanities

and Social

Sciences

186

153.7

227

193.4

219

222.5

355

360.2

653

710.2

1640

1640.0

College major

Engineering

38

53.1

54

66.9

78

76.9

112

124.5

285

245.5

567

567.0

Agriculture

35

52.2

45

65.7

78

75.6

140

122.3

259

241.2

557

557.0

Total

259

259.0

326

326.0

375

375.0

607

607.0

1197

1197.0

2764

2764.0

Chi-Square Tests

Pearson Chi-Square

Likelihood Ratio

Linear-by-Linear

Association

N of Valid Cases

Value

47.892(a)

49.087

32.681

2764

df

8

8

1

Asymp. Sig.

(2-sided)

.000

.000

.000

a 0 cells (.0%) have expected count less than 5.

The minimum expected count is 52.19.
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Hypothesis: Ho:x2 = SPSS Procedure:

Use data set: Chi-Square Test of Independence

These are summarized data and as such you have to weight the

data.

1. Select "Data" from main menu

2. From "Weight Cases" select "Weight cases by"

3. Under "Frequency Variable" select freq from the "Variable List"

4. Click "OK"

5. tn the lower right hand comer of the screen you should see

"Weight On."

Analysis Procedure:

1. "Descriptive Statistics"

2. "Crosstabs"

3. From "Variable List" move Parental Income to "Rows" window

4. From "Variable List11 move College Major to "Columns" window

5. Select "Statistics" tab

6. Check "Chi-square"

7. Click "Continue"

8. Select "Cells" tab

9. Under "Counts" select "Observed" and "Expected"

10. Under "Residuals" select "Unstandardized"

11. Click "Continue"

12. Click "OK"

Conclusion: Reject

the null hypothesis

(Ho:%2 = 0) because p

= .000 < .05.

The researcher

can conclude that a

relationship exists

between college major

selections of entering

first year students and

parental monthly

income. The residual

is computed as

(Observed minus

Expected) so that a

negative residual

means that more

would have been expected by chance with independent measures than were

actually observed. The reverse is true for a positive residual.

Spearman - Rank Correlation Rho (p): Ordinal

When there are pairs of observations, one from set S and the other from

set T, it is possible to compute the association between the two sets

represented by the pairs. It is only necessary to rank the scores within each

set. The rank correlation is based on the difference between the ranks and

can range from plus one for perfect agreement to minus one for perfect

disagreement. It has the expectation of zero when the two sets are

independent. For ten pairs or more, the variance of the correlation is estimated

Assumptions:

1. The data consist of a random sample of n pairs of numeric or non-

numeric observations.

2. Each pair of observations represents two measurements taken

on the same object or individual.

3. These measures are on an ordinal scale. The data for a variable

are ranked relative to all other observations for that variable from

smallest to largest. The smallest observation is ranked 1.

4. If ties occur, the tied measures are typically assigned the mean of

the tied ranks.
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Hypotheses:

Two-tailed: Ho: p = 0, H^ p * 0

One-tailed:Ho: p < 0, H^ p > 0, or Ho: p > 0, H,: p < 0

Procedure:

1. State the null and alternative hypotheses.

2. Select the level of significance a.

3. Rank the observations in each set.

4. Compute the differences in ranks and use this to compute the

correlation.

5. Compare p to the value needed to reject the null hypothesis.

Example: There are ten departments in the College of Arts and Sciences.

The researcher wants to answer the question; Are the numberof credit hours

generated by these departments in the Fall semester related to the number

generated in the Spring

SPSS Output semester?

Hypotheses (Two-tailed): Ho:

p = 0, H^p^O, a =.05

Correlations

1
Spearman's rho fall

spring

Correlation

Coefficient

Sig. (2-tailed)

N

Correlation

Coefficient

Sig. (2-tailed)

N

fall

1.000

10

.717(*)

.020

10

spring

.717(*)

.020

10

1.000

10

* Correlation is significant at the 0.05 level (2-tailed).

SPSS Procedure:

Use data set: Sign Test _two related samples

1. "Correlate"

2. "Bivariate Correlations"

3. From "Variable List" move fall and spring to

"Variables" window

4. Under "Correlation Coefficients" select

"Spearman"

5. Under "Test of Significance" select

"Two-tailed"

6. Click "Flag significant correlations"

7. Click "OK"

Conclusion: Reject the null

hypotheses (Ho: p= 0) since

p = .02 < .05.

Results of the test

suggest that there is a

relationship between the

number of hours generated

in the Fall and Spring

semesters. The null

hypothesis against which the

test is run is for "no

relationship". Note that the

manner in which the question

was asked —"are related" —

suggests the use of a two-

tailed test.

Measures of Association: Three or More Variables

Kendall's Coefficient of Concordance W: Ordinal

While Spearman's Rank Order Correlation works with two measures, it

does not generalize well to more than two. A procedure similar to Spearman's

computes the concordance of various measures. Concordance is defined as
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having pairs of measures that are in the same direction. In other words, if

(Xj > x.) and the same relationship exists for the pair of observations on a

second variable (y. > y^, then the pairs are concordant. If there are only two

measures, the resulting statistic is frequently referred to as tau. When there

are more than two measures, the statistic is referred to as Kendall's W or

Coefficient of Concordance. This measure shows the amount of agreement

for a set of rankings. The W statistic ranges from near 1.0 to 0.0 but never

reaches these limits. It does not fall below zero since the concept of

disconcordance does not have a definition with three or more rankings. As

mentioned earlier, W is related to Friedman's Two WayAnalysis of Variance

ofRanks much as the Correlation Ratio Eta Squared (if) is related to ANOVA,

where W explains the association and Freedman's Two Way Analysis of

Variance ofRanks explains the differences in the average ranks.

Assumptions:

1. The data consist of b complete sets of observations or measures

on k items.

2. The measurement scale is at least ordinal for the k items.

3. The observations as collected consist of ranks or are converted to

ranks within the k observations.

Hypotheses:

Ho:W = 0;

Procedure:

1 State the null and alternative hypotheses.

2 Select the level of significance a.

3 Rank the "n" objects for each situation.

4 Compute the W.

5 Compare W to the value Q needed to reject the null hypothesis.

Example: Administrators in higher education are increasingly interested in

comparing their institution with a group of peer institutions. The President of

the researcher's institution wants to compare the relative positions (rankings)

of a set of peer institutions (including his own) on three measures—number

of applicants, faculty salaries, and research expenditures. Researchers want

to answer the question: Are the rankings produced by the three measures;

Number of Applicants, Faculty Salaries, and Research Expenditures,

significantly related to each other -and ifso - howstrongly are they related?

Hypotheses: Ho:W = 0; Ht: W * 0; a = .05

Note: To build the second data set, each case (e.g. row in the input data) is
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SPSS Output

Case Summaries (a)

Peer Institutions

1

2

3

4

5

6

7

8

Rank of

Applications

6

1

3

5

8

2

4

7

Rank of

Average

Salaries

8

7

4

3

6

1

2

5

Rank of

Research

Expenditures

6

7

2

4

8

1

3

5

a. Limited to first 100 cases.

Ranks

Institution 1

Institution 2

Institution 3

Institution 4

Institution 5

Institution 6

Institution 7

Institution 8

Mean Rank

6.67

5.00

3.17

4.00

7.33

1.33

3.00

5.50

SPSS Procedure:

Use data set: Kendall's Coefficient

of Concordance Wb

1. "Nonparametric Tests"

2. "K-Related Samples

3. Move Inst1-lnst8 variables to "Test

Variable" window

4. Check "Kendall's W"

5. Click "OK"

Test Statistics

N

Kendall's W(a)

Chi-Square

df

Asymp. Sig.

3

.676

14.195

7

.048

a Kendall's Coefficient of Concordance

the set of ranks and each variable is an item being judged. In this example,

the first case is Applications, the second case is Average Salaries, and the

third case is Research Expenditures. Each institution then becomes a variable

(column in the input data).

Conclusion: Reject the null hypothesis (Ho: W = 0) because p =.048 < .05.

Results of the test suggest that the rankings for the eight institutions

are statistically similar for the three measures. This finding indicates that the

three measures are statistically related to each other and as such give

comparable results. It should be noted that the test of significance is the

same as the test that the eight schools came from the same population

(Friedman's Two Way Analysis of Ranks).
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Beyond Nonparametrics: Some Advanced Topics

While the preceding discussion focused some of the more traditional

methods of non-parametric statistics, there are also other powerful tools that

require fewer assumptions than the parametric tools. While the full

demonstration and explanation of these tools are beyond the scope of this

chapter, the following describes some of them so that those who see them

as useful can follow up on their value through the included references.

OLAP

The emerging methodology of On Line Analytical Processing is basically

a non-parametric methodology. It involves the data mining of events that are

non-parametric. It is not assumed that there is an underlying distribution.

Furthermore it is not assumed that there is a linear or higher level of the

dependent measure. Within this methodology, there is an emerging set of

analytical techniques (Thierauf, 1997).

• The first set of data mining tools model what is known as "neural

networks." These methods are based on collections of inputs and

outputs, and processing. Each node is capable of learning as it

has a mechanism that allows it to learn pattern recognition. This

pattern typically involves non-additive events that produce an

expected outcome.

• "Decision trees" are the second type of data mining. They divide

the data into groups based on values of variables. Typically the

decision trees have algorithms that allow them to maximize the

differences between groups compared to the variances within

groups.

• "Rule induction" is the third type of data mining tools. These tools

work to develop a set of if-then statements. These rules are

typically many-to-one relationships although in their more complex

forms they can approach many-to-many. As such they are similar

to the learning process of neural networks.

• "Data visualization software" is the fourth and final type of data

mining tools. These tools provide the ability to visualize up to as

many as four variables in a single picture. Their effectiveness

depends on the knowledge of the viewer about the capability of

the tool and provider to show meaningful relationships.

It should be noted that these methods may or may not depend on a

linear scale. Their non-parametric nature is on their use to produce results

without developing an assumption of the underlying distribution of the

observations.
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Log-Linear Analysis

Log-linear analysis provides the opportunity to look at the independence

of three or more variables based on the number/frequency of occurrences for

the individual categories. This is an extension of the situation where the Chi

Square Test of Independence would be useful except there are more than two

independent sets of categories. The dependent variable, in the perspective of

ANOVA, is the frequency or the count of occurrences that occur within the

presence of the multiple independent variables. This methodology does

assume certain underlying distributions, but in general is much less restrictive

than the Analysis of Variance and other similar techniques. It does involve

the use of the Chi Square frequency to estimate the failure of the model to fit

the observed data. As such, it uses the Chi Square and some other metrics

to measure a drop in the ability of a model to fit the data. If alternatives are

nested, then the move to a more parsimonious model can be evaluated on

the basis of the increase of the unexplained variation of the data from the

expected value.

Multidimensional Scaling

Multidimensional Scaling (MDS) is a means for looking at the structure

underlying a large number of associated measures. This, unlike factor analysis,

does not require that relationships between the variables be explained based

on correlations from a linear association. Multidimensional Scaling can, in

fact be based on an interval scale, but it can also be also based on a rank

ordering of the distances between various stimuli. In addition to MDS, there

are various clustering techniques based on measures and methodologies

that are not the traditional interval, continuous, and normally distributed

measures.

Resampling Processes

"An important theme of what follows (resampling plans) is the substitution

of computational power for theoretical analysis. The payoff, of course, is

freedom from the constraints of traditional parametric theory, with its over

reliance on a small set of standard models for which theoretical solutions are

available. In the long run, understanding the limitations of the nonparametric

approach should make clearer the virtues of parametric theory, and perhaps

suggest useful compromises" (Efron, 1982, p. 3).

One of the newer developments in nonparametric statistics has been

the creation of several methodologies that involve resampling subsets of the

data. The most popular of these are Jackknifing and Bootstrapping. These

methodologies were popularized by Efron in the late 1970s. Their purpose is

to estimate the dispersion of various statistics from a set of data without

requiring any assumptions about the distributions underlying a sample of

data. Bootstrapping involves the random sampling of a large number of sub-

samples from the original data set with replacement. Each sub-sample
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contains the same number of elements as the original data set but does not

have to contain all the original elements of the data set. By resampling a

large number of times and producing the statistic at each iteration, the

distribution of the statistic can be obtained. In Jackknifing there is a limited

number of data sets created, each of which contains original data but omits

at least one of the original data elements. Jackknifing requires far fewer

computations but Bootstrapping is normally considered to be superior. (Efron

& Gong, 1983) Various programs can be used in these resampling strategies

including SPSS with some modifications to the basic package.

Other Considerations when Using Nonparametric Statistical Tools

About the Central Limit Theorem and Law of Large Numbers

This theorem and law support the use of parametric statistics and normal

approximations to probabilities associated with nonparametric tests of location

when there is an interval scale but the population distribution can not be

assumed to be normal. 'The central limit theorem tells us that a sampling

distribution always has significantly less wildness than the population it's

drawn from. Additionally, the sampling distribution will act more and more

like a normal distribution as the sample size is increased, even when the

population itself is not normally distributed! ...The law of large numbers

is even more basic than the central limit theorem and so can be considered

more important. It says essentially that probability and statistics can only

predict overall results for a large number of data points or trials... .think "central

limit theorem" when changing the sample size and think "law of large numbers"

when changing the number of samples" (Rogers et al., 2004).

About Ordinal Data and Ties

In the analysis of ordinal data, one of the issues is how to deal with tied

observations. In many of the statistics, the assumption is made that the

underlying measure is a continuous measure. This removes the likelihood of

ties because the probability that a specific point occurs twice is zero. In

reality the specific score is to some level of precision and this causes ties in

the various cases. In cases where the measure is the comparison of pairs of

observations such as in various pairs tests, the likelihood of a tie is smaller,

especially if the rater is given options of "larger" or "smaller." Gibbons (1971,

p. 96-97) identifies several ways to deal with ties. Five approaches are

described below:

• Average ranking: One of the simpler methods for dealing with tied

observations is to use the average of the ranks for which the

observations would have been tied. This maintains the average or

sum of the ranks. It also, however, reduces the variance of the

ranks.
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• Remove the observation: This seems to be a methodology for the

comparison of pairs of observations where the intent is to assign

a binomial outcome to the results of the comparison such as in

the sign test or the median test where an observation is tied with

the median.

• Develop adjustments to the statistic: This is often done for

statistics based on the concordant or discordant pairs. For

example, Kendall's Tau (t) has one form that takes ties into account

by reducing the number of pairs to the number of untied pairs (tau-

b). Another example is the correction for ties that has been

developed for the Kruskal-Wallis Test (Agresti, 1984) although

some simply suggest that ties across groups can be resolved

with average ranks or by using an assignment that gives the lowest

chance to reject the null hypothesis (Gibbons, 1971).

• Calculate all alternatives: Assign ranks to tied observations in all

possible ways and compute the statistic under the various

alternatives. Then one can either use the average of the statistics

or use the most conservative of the statistics. This is similar to

the assignment of tied ranks that seems to produce a conservative

estimate of the true difference.

• Select ranks at random before the experiment This seems to

preserve the random character of the situation. If one had randomly

assigned ranks and two observations were tied, one would use

the random ranks to break the tie. If the random items were a

sequence, then one would use the random assigned sign to the

item tied with the median.

If there are a large number of ties, one may need to do additional analysis

or pre-process the data. Also, be sure there is an understanding of how

SPSS handles tied observations and/or ranks.
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Chapter 2

Analysis of Variance Applications

in Institutional Research

Robert J. Ploutz-Snyder

This chapter will provide the institutional researcher with an overview of

the basic theory behind the Independent and Repeated Measures Analysis

of Variance (ANOVA) statistical techniques. The ANOVA statistic is a very

versatile tool that can be put to task to address numerous important institutional

questions, and if we are successful in this chapter, the reader will come

away with several concrete applications of this statistical technique.

We will begin with a discussion of what types of data are appropriate for

ANOVA, and how to collect and organize data for analysis. Because ANOVA

is so versatile, we will then discuss some of the basics of statistical/

experimental design concepts that the analyst must be knowledgeable about

in order to maximize the potential knowledge-gain from a study utilizing

ANOVA. We will then discuss how one might use SPSS software to run the

ANOVA statistic, including several specific examples in institutional research

that illustrate the different experimental designs that ANOVA can handle.

Some of the data sets used in this chapter were created specifically for

instructional purposes, while others are actual data sets collected and

analyzed with ANOVA. The end of this chapter will include some pointers on

how the institutional researcher can use graphical techniques and statistically

jargon-free language to present the results of a study analyzed with ANOVA

to a statistically naive audience. Thus, our six learning objectives are to

enable the reader to (1) Determine when it is appropriate to apply ANOVA;

(2) Design data collection and management strategies appropriate forANOVA;

(3) Establish appropriate hypotheses forANOVA; (4) Use SPSS to run various

ANOVA models; (5) Interpret SPSS results from ANOVA runs; and (6) Report

the findings of ANOVA research to a statistically naive audience.

Before we begin, I would like to acknowledge three of my many statistical

mentors who taught me to use and loveANOVA during my graduate training.

Dr. Allan J. Nash, Professor Emeritus at Florida Atlantic University, devoted

tremendous hours and dedication to teaching statistics and experimental

design, and I learned much of what I know about ANOVA from him. I also

owe a debt of gratitude to Professors Francis S. Bellezza and Bruce W.

Carlson at Ohio University, for further expanding my knowledge in multivariate

and log linear analysis of variance during my doctoral training there. While

this chapter serves as a hands-on ANOVA primer for the institutional

researcher, it is certainly no surrogate for the in-depth training that one receives

from semester-long courses taught by dedicated college and university faculty

such as these.
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Statistical & Theoretical Background for ANOVA

Like all statistics, ANOVA has assumptions about the data to be

analyzed. ANOVA has been shown to be robust to modest violations of

these assumptions, but if your data show considerable violations of one or

more assumptions, you should consider data transformations or other

statistical options that correct for serious violations of these assumptions. I

will discuss some of these options in our examples later in the chapter.

The first assumption of the ANOVA statistic is that the outcome is

collected randomly from the population with equal or similarly sized samples

per group. This assumption is one that the researcher can usually control at

the study design and data acquisition stages. If done well, it greatly increases

the probability that the other assumptions will be met.

The second assumption of the ANOVA statistic is that the outcome of

interest is measured on an interval scale, and is normally distributed.

Sometimes it's necessary to transform data in order to meet this assumption,

butANOVA has also been shown to be robust to violations of this assumption

(i.e. should perform adequately in the face of moderately non-normal data).

Note thatANOVAassumes normality for the entire sample and within groups

("multivariate normality1'). Institutional Research and Assessment examples

of data commonly analyzed by ANOVA include age, salary, and GPA.

Technically, Likert-scaled survey items are not interval in scale; however,

these types of data are commonly evaluated with ANOVA throughout the

literatures of education, psychology, assessment, medicine, and others.

However, one should note that these studies usually combine Likert-scaled

survey items that assess similar constructs together by calculating the sum

or average of several Likert-scaled items in which case Likert-scaled survey

data tends to meet the assumptions ofANOVA. It is rare that a single Likert-

scaled survey item would meet the assumptions ofANOVA, and thus should

probably be analyzed using non-parametric statistical techniques.

Third, ANOVA assumes that the variance on the outcome variable is

similar across groups. This assumption is referred to as "homogeneity of

variance." It is something we can test for and correct with SPSS, though

ANOVA has been shown to be robust to modest violations to this assumption.

There is also a special kind of "homogeneity of variance" for repeated-measures

ANOVA designs, called "sphericity." Sphericity is when the variance of the

difference between the estimated means for any pair of groups is the same

as for any other pair. It is also something we can test for and correct with

SPSS if necessary.

Weiner, Brown and Michels (1991) present a more in-depth discussion

of the assumptions of the ANOVA statistic, and how to test for them

statistically. Tabachnick and Fidell, (1989) devote an entire chapter to this

subject, including a nice discussion of the effect of data transformations on

meeting ANOVA assumptions.

A question that arises when discussing ANOVA is, "Why use ANOVA,
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when there's a perfectly good t-test in my toolbox?" In the first monograph

on statistics and institutional research, published by Coughlin and Pagano

(1997), one reads about how researchers can compare continuous-level data,

such as students5 GPA, across two groups, (for example, males versus

females, or School of 'X' versus School of 'Y') using either an Independent

Measures t-test (if you are comparing two different groups), or a Repeated

Measures t-test (if one is comparing the same subjects measured two different

times). T-tests are taught the world over as part of an "intro stats" course in

all disciplines, and the intuitive nature of the test makes it one that practically

everyone understands and accepts. So why not use the t-test in place of
ANOVA?

The answer has to do with situations in which there are more than two

groups to compare. Institutional researchers are often interested, for example,

in comparing student-learning outcomes across several majors, departments,

or schools. Admissions people might like to compare the incoming

qualifications of entering students by high school and the many high schools

applicants hail from. Perhaps one would like to compare alumni donations

received by college major or year of graduation. What about comparing student

satisfaction ratings across various residence halls, food service facilities, or

ratings of faculty teaching across departments? One could argue that running

as many multiple t-tests as necessary, each comparing pairs of departments,

faculty, majors, high schools, etc., would indicate where pair-wise differences

by group exist. Yet there is a large flaw in this logic, for every time we run a

t-test comparing two groups (or the same group at two times), we risk making

a Type-I error. Remember that a Type-I error is one in which we falsely reject

the null hypothesis—claiming that there is a statistical difference between

groups when the difference observed is purely due to chance. While the risk

of making this sort of error for a single t-test is very low, determined by alpha

(usually .05), the trouble with running multiple t-tests making all pair-wise

comparisons is that the experiment-wise risk increases at the rate of alpha

per additional test. For example, if we wanted to compare student ratings of

faculty teaching across ten different departments to determine which

departments were rated significantly higher than others, this would require

100 different pairwise comparisons (A vs. B, A vs. C, A vs. D....A vs. J, B vs.

C ), each contributing .05 alpha risk. During the course of this study, we

would have .05*100, or alpha = 5.0 risk of incorrectly concluding that there
was a significant difference in student ratings of faculty! Clearly that is an

unacceptable statistical risk.

ANOVA in its simplest form (one-way ANOVA) is appropriate for

comparing more than two groups, or one group measured more than two

times. Within this chapter, we will illustrate how to use ANOVAto determine

whether or not there is an overall difference between groups (or repeated

observations), and if so, then how to determine where pair-wise differences
exist if that is of interest.

53



ANOVA is also useful for evaluating the effects of more than one grouping

factor on an outcome. For example, if we wanted to compare faculty salary

by department andgender, or if we wanted to research the effects of a human

resources policy change on staff satisfaction before versus after the change,

and by administrative level, ANOVA is a flexible analytic tool that can

accommodate two, three, four or more factors simultaneously. In fact, there

is no limit to the number of factors ANOVA can use, though I will discuss

practical limitations that I hope will moderate some potentially overzealous

experimental designs.

Two General Types of ANOVA: Independent vs.

Repeated Measures Designs

Similar to the t-test, ANOVA can handle independent and repeated

measures designs. Studies that compare two or more separate, independent

groups, like males versus females, or full versus associate versus assistant

professor, are known as independent-measures designs, and will be analyzed

using an Independent MeasuresANOVA (IM-ANOVA). Studies that measure

the same outcome from the same sample, but on two or more occasions

(pre/post studies, or freshmen, sophomore, junior, senior longitudinal studies)

are commonly referred to as longitudinal or repeated measures designs, and

will be analyzed using the Repeated Measures ANOVA (RM-ANOVA)

technique. Unlike the t-test, ANOVA can also handle mixed-model designs

that assess the effects of one or more of each type of factor. These are

commonly referred to as mixed-model ANOVA designs.

We will discuss and illustrate the IM-ANOVA first, followed by RM-

ANOVA, ending with an example of a mixed-model ANOVA.

One-WayANOVA: The Simplest Independent MeasuresANOVA Design

The simplest of research questions appropriate forANOVAwould be a

comparison of three or more independent groups1, with the null hypothesis

that no differences exist across groups, and the alternative hypothesis that

there is an overall group difference. For illustrative purposes, suppose there

are k=three independent groups in the population that one would like to make

inferences about, and that one randomly selected equal-sized samples of

n=6 from each population, resulting in a total of n=18 subjects. The name,

"analysis of variance," refers to the fact that the ANOVA statistic breaks

down the total variability (i.e. variance) in the n=18 subjects into two major

components—"between group" variability and "within group" variability. In so

doing, ANOVA then determines whether any "between group" variability is

unusual, given the "within group" variability. In other words, are the subjects

more different between groups than they are within groups?

Variability within groups is comprised of individual differences among

respondents within that group (individual differences), plus error variance.

Variability between groups is due to any real group differences that exist,
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plus individual differences and error variance. TheANOVA statistic evaluates

the proportion of total variability that is due to between-group differences, and

if there is an unusual amount of between-group variability, the statistic is said

to be significant, and one would reject the null hypothesis of no differences

among groups. Figure 1 illustrates the theory behind the ANOVA statistic.

Figure 1

Components of the IM-Analysis of Variance F-Statistic

:•:■■'.: ■,■:■'■ T^*M3?^"™""lf,"■ ■ - \• '.''■ ?■, •;

IM ANOVA F -
variability w/i groups

_ !D*s + error + group differenes

ID1 s + error

Note that if the data meet the homogeneity of variance assumption for

ANOVA, by simple algebraic rules, we know that the individual differences

and error components in the numerator of the F-ratio will "cancel out" those

terms in the denominator of the ratio, leaving nothing but group differences in

the numerator over 1 in the denominator. Thus the F-ratio is a quantity that

represents the amount of variance due to between-group differences. If there

are no differences, then F=1 because the numerator and denominator of the

fraction will be equal. As the between-group differences increase, so too

does F. The ANOVA statistic (F) is derived from a known distribution, called

the F-distribution, and like the t-table for statistical significance, there is a F-

table that associates probability values to observed F-values, given sample

size, and degrees of freedom from the numerator and denominator of the F-

ratio. The F-table is commonly available in most statistical texts, though

modern statistical software provides p-values associated with observed F-

ratios, given the known properties of the F-distribution.

As mentioned previously, ANOVA analyzes variability. ANOVA uses

the sum of squares (SS) as the raw measure of variability, adjusted by the

appropriate degrees of freedom given the number of observations in the sample,

and the number of groups (k) that are being compared. The adjusted SS

terms are called mean squares (MS) byANOVA nomenclature. All of these
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components of the ANOVA F-statistic are summarized by modern statistical

software in an ANOVA summary table. The ANOVA summary table shows

the sum of squares, degrees of freedom, and mean squares attributable to

between group differences, within group differences, and total. Table 1 shows

the components of an ANOVA summary table.

Table 1

Components of the IM-ANOVA Summary Table

Source

Between Groups

Within Groups

Total

df

k-1

n-k

n-1

SS

2>(
k

i=l

/=!

w/i each group

MS

^^between groups

"* beIween groups

within groups

F

^between groups

P

Probability given a,

dfbctween ^d dfwithin of no

differences

To illustrate a simple one-way ANOVA, imagine that you have been

asked to compare student evaluations of introductory courses across three

departments: psychology, biology, and chemistry. For this example, let's

assume that you randomly selected evaluations from n = 253 students, split

nearly equally across the three departments. After running the One-way

ANOVAcommand within the Compare Means menu on SPSS, and choosing

Descriptive Statistics. Homogeneity Tests, and Tukey's HSD Post-Hoc

options, SPSS produced the output shown in Figure 2. Note that our sample

sizes were approximately equal per group, with n = 86, 78, & 89 student

evaluations from psychology, biology and chemistry, respectively. Mean (SD)

evaluations are presented in the descriptive statistics table, followed by the

Levene's test for homogeneity of variance. The Levene statistic tests the

null-hypothesis that the variance among groups is constant. In this case,

the Levene's test was not significant, indicating that our data do not violate

ANOVA's homogeneity of variance assumption. The ANOVAsummary table

shows an F= 11.89, with p < .001. This is clearly a significant result at alpha

= .05, .01, or .001, indicating a significant overall difference in student

evaluations of introductory courses across the three departments of

psychology, biology and chemistry. This is known as the "omnibus F-test"

because it tells us whether or not there is an overall difference among means

from these three groups. However, the omnibus F-test does nottell us anything

about potential differences between any two departments. For one to establish

whether or not any two departments differ significantly in this study, it is

necessary to run a post-hoc analysis evaluating the pair-wise comparisons.

Several different choices of post-hoc tests are available for a researcher to

choose; each designed to test for pair-wise differences, and each with a

distinct set of assumptions. Here, I choose the Tukey's HSD post-hoc analysis
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Figure 2

Results of a One-Way ANOVA Comparing Student

Evaluations of Introductory Freshman Courses

in Psychology, Biology, and Chemistry

Student eval of Intro course

Psych 101

Bio 101

Chem 101

Total

N

86

78

89

253

Mean

6.65

5.49

5.53

5.90

Std.

Deviation

1.713

1.778

1.803

1.840

Descriptives

Std. Errot

.185

.201

.191

.116

95% Confidence Interval fo
Mean

Lower Bound

6.28

5.09

5.15

5.67

Upper Bound

7.02

5.89

5.91

6.13

Minimum

4

3

3

3

Maximum

9

8

8

9

Test of Homogeneity of Variances

Student eval of Intro course

Levene

Statistic

.164

df1

2

df2

250

Sig.

.849

ANOVA

Student eval of Intro course

Between Groups

Within Groups

Total

Sum of

Sauares

74.126

779.202

853.328

df

2

250

252

Mean Sauare

37.063

3.117

F

11.891

Sig.

.000

Multiple Comparisons

Dependent Variable: Student eval of Intro course

Tukey HSD

(I) Department (J) Department

Psych 101 Bio 101

Chem 101

Bio 101 Psych 101

Chem 101

Chem 101 Psych 101

Bio 101

Mean

Difference

(I-J)

1.16

1.12

-1.16

-.04

-1.12

.04

* The mean difference is significant at the .

Std. Error

.276

.267

.276

.274

.267

.274

05 level.

Sig.

.000

.000

.000

.988

.000

.988

95% Confidence Interval

Lower Bound

.51

.49

-1.81

-.69

-1.75

-.60

Upper Bound

1.81

1.75

-.51

.60

-.49

.69

because Tukey's HSD test is one of the more conservative (and thus popular)

options that hold experiment-wise error to .05. Reading the Tukey's HSD

table, I can see that the mean difference in ratings of Psych 101 and Bio 101

is 1.16 (SE .276), with a p-value <.001. Student ratings of Psych 101 courses

were also significantly higher than Chem 101 (p < .001). However, student

evaluations of Bio 101 were not significantly different from evaluations of Chem

101, as noted by the mean difference score of .04 (SE = .274) and non

significant p-value of .989.
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In this example, the researcher had no apriori hypothesis regarding

which pairs of departments might differ from one another, and thus a simple

one-way ANOVA followed by a post-hoc comparison of all possible pairs is

appropriate. The choice of which post-hoc comparison to run can be involved,

though the most common post-hoc analyses in the social/education literature

is probably Tukey's HSD, because it adjusts for multiple comparisons

appropriately without being overly conservative.

Bonferonni, Scheffe, and Sidak are other common post-hoc analytic

choices that adjust for the multiple comparisons in slightly different ways.

The Bonferonni correction is a simple, conservative way for adjusting for inflated

risk of making Type I errors. When running multiple statistical analyses, the

Bonferonni technique simply divides the critical alpha (typically .05) by the

number of comparisons conducted before concluding that a significant effect

is observed in order to maintain the experiment-wise Type I error risk. The

Bonferonni adjustment is a more conservative adjustment technique than the

others, and is thus preferred when the consequences of making a Type I error

are severe. The Sidak and Scheffe are a little less conservative than the

Bonferonni adjustment, and are sometimes preferred over Bonferonni. Note

also that SPSS provides several other post-hoc choices, including the LSD

(least squared difference) statistic that performs uncorrected multiple

comparisons, and is thus a more liberal approach to post-hoc analysis. I

generally recommend against using the LSD method in most situations.

Finally, note also that in our case, the data met the assumption of homogeneity

of variance. In situations in which the data violates this assumption, there

are post-hoc tests available that attempt to correct for the heterogeneity of

variance across groups when making the pair-wise comparisons (ex. Dunnetfs,

or Games-Howell). These tests also vary slightly in how they protect against

Type I error rates, though the differences tend to be subtle.

We will discuss an alternative approach to running post-hoc pairwise

comparisons (apriori contrasts) in the Repeated Measures ANOVA (RM-

ANOVA) section.

Two-Factor Independent Measures ANOVA Designs

TheANOVA statistic in the more general form expands on the notion of

splitting variance into between groups and within groups variance for more

than one factor, and assessing the extent to which between-group variance

is significant. ANOVA can, for example, determine whether data are

significantly different between groups of students with different national origins,

andby their choice of college major. The experimental design and analysis

becomes more complicated, but is often far more interesting than simply a

"one-wayANOVAtimes two."

In two-factor ANOVA designs, we actually assess the significance of

three factors that contribute variance to the model. Obviously we evaluate
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the effects of each of the two factors in the model (ex. national origin, college

major). The additional effect that a two-factor ANOVA design evaluates is

called the interaction term, and it represents the combined effects of both

main effect factors. Interaction effects are often very interesting, seldom

explored under multiple regression or other analytic approaches, and seem

to me to represent the hallmark feature of multi-factorial ANOVAthat makes

this statistic so incredibly powerful and interesting. I will illustrate with another

example.

In this example, you are examining students' first-term college GPAby

college major, a three-level factor (Math, Business, U.S. History) andstudents'

national country of origin/citizenship (assume here that students remain

citizens of their country of origin). To simplify matters, assume that we have

collapsed students into two groups on this latter factor; U.S. and non-U.S.

citizens. Figure 3 shows the descriptive statistics and the results of the two-

factor independent measures ANOVA. Note also that these data violate

ANOVA's assumption of equal variance across groups indicated by a significant

Levene's test for equal variance. While this is an undesirable reality, statistical

studies have previously shown that ANOVAtends to be robust to this sort of

problem, and while it remains necessary for the researcher to acknowledge

this violation in any formal report or publication, the results of an ANOVA that

violates the homogeneity of variance assumption tend to be accurate

nonetheless.

What is clearly obvious when comparing Figure 3 to Figure 2, is that

the ANOVA summary table in Figure 3 is much larger than the ANOVA table

in Figure 2. We now have an analysis that evaluates five different F-ratios

and associated p-values. The "corrected model" F-ratio is an evaluation of

how well the model "fit the data," and is analogous to the evaluation of a

multiple regression model. The "intercept' term is also analogous to a multiple

regression model, as it represents the Y-intercept term for a linear model

predicting GPA. In ANOVA, these two effects are not meaningful. For our

purposes, only the remaining three effects (illustrated in bold-face font) are

relevant—two main effects, and one interaction term. Specifically, we will

evaluate whether students' GPA differs by Major (a main effect with 3 levels),

and/or by Citizenship (a main effect with 2 levels), and/or whether or not there

is a difference in college GPAthat is dependent on both major anc/citizenship

(a two-factor interaction). Each of these effects is represented in the ANOVA

summary table as a separate row with their respective F-ratios and associated

p-values.

Working through the main effects first, we see a significant effect for

college Major (p = .003), and a non-significant effect for Citizenship (p =

.212). Judging by this information alone, we might conclude that students'

first-term college GPA differs by Major, but there's no difference based on

their Citizenship. We might then further examine the mean GPAs across the

three college majors in this study to determine which majors are significantly
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Figure 3

Results of a 2 (citizenship) X 3 (major) IM-ANOVA Evaluating

First-Term College GPA

Descriptive Statistics

Dependent Variable: GPA after 1 term

MAJOR

Math

Business

US History

Total

Citizenship

U.S.

Other

Total

U.S.

Other

Total

U.S.

Other

Total

U.S.

Other

Total

Mean

2.9750

3.5250

3.2500

2.6384

2.8240

2.7312

3.5813

2.3965

2.9889

3.0649

2.9152

2.9900

Std.

Deviation

.29580

.29580

.40351

.84313

1.00387

.91984

.31154

.75263

.82656

.66571

.86902

.77447

N

20

20

40

20

20

40

20

20

40

60

60

120

Levene's Test of Equality of Error Variances3

Dependent Variable: GPA after 1 term

F

16.165

df1

5

df2

114

Sig.
.000

Tests the null hypothesis that the error variance of the

dependent variable is equal across groups.

a. Design: Intercept+MAJOR+CIT+MAJOR * CIT

Tests of Between-Subjects Effects

Dependent Variable: GPA after 1 term

Source

Corrected Model
Intercept

MAJOR

CIT

MAJOR * CIT

Error

Total

Corrected Total

Type III Sum
of Squares

22.791a
1072.835

5.384

.673

16.735

48.585

1144.211

71.376

df

5

1

2

1

2

114

120

119

Mean Square

4.558

1072.835

2.692

.673

8.367

.426

F

10.695

2517.284

6.316

1.578

19.633

Sig.

.000

.000

.003

.212

.000

a- R Squared = .319 (Adjusted R Squared = .289)

Estimated Marginal Means of GPA after 1 term

to 4.00

3.00

2.00 -

1.00-

0.00

Citizenship

U.S.

Other

Math Business US History
Major
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different from the others, using post-hoc pair-wise comparisons. Regardless

of what the pair-wise comparisons reveal, this approach ignores the potential

impact of Citizenship to GPA, and in this example, where we have a highly

significant Major by Citizenship interaction term (p = .000), we would be

missing some very important information about the determinants of students'

first-term GPA. The main effect that we see for Major is said to be qualified

bythe significant Major by Citizenship interaction term, and thus is it important

that we consider the interaction term in our model first, before we move to an

interpretation of any significant main effects revealed.

The interpretation of interaction terms, especially those involving more

than two factors, can get complicated. I find it easier to visualize the effects

of multiple factors by using the graphing features of SPSS (or other) statistical

software (note the line-chart imbedded in Figure 2). An appropriate statement

given our significant Major x Citizenship interaction term would be that the

differences in GPA across college major that we see for U.S. citizens are not

the same as the differences we see across major for non-U.S. citizens.

From here, there are two general schools of thought as to what to do next to

further understand the effects. One school of thought is to simply stop

analyzing the data and interpret what is seen. Statisticians subscribing to

this paradigm argue that the significance of the interaction term is sufficient

enough information to halt further analyses, and that further analysis merely

increases the experiment-wise risk of making a Type I error (falsely concluding

that a difference exists, when it is due to chance alone).

A second school of thought is that the significant interaction term gives

as the justification we need to break down the analysis further and determine

more precisely how differences across one factor involved in the interaction

compare across the levels of the other factor. That is, how do GPAdifferences

between Majors for U.S. Citizens compare to GPAdifferences between Majors

for non-U.S. Citizens? I generally subscribe to the latter school of thought in

that a significant interaction term provides justification for follow-up analyses,

even though we are technically increasing Type I alpha risk by conducting

additional analyses on the data. If I am particularly concerned about this

additional risk, I could employ a statistical correction for multiple analyses,

such as the Bonferonni alpha-correction.

If we subscribe to the notion that additional analyses are warranted, we

are not finished with this example just yet. Our next choice regards which

factor we want to hold constant while examining differences across the levels

of the other factor. We could, for example, look at the GPA differences

between U.S. and non-U.S. Citizens within levels of Major. Or, we could

examine differences across Major first for U.S. Citizens, then for non-U.S.

Citizens. This choice is not trivial, and depends largely on the context in

which one sets out to conduct this research in the first place. It would not be

appropriate to try it both ways, as this further increases our probability for

making Type I errors, and statisticians universally agree that such an unguided
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approach (i.e. fishing expedition) is inappropriate. Let theory be the guide

instead, and even then consider an alpha adjustment, like the aforementioned

Bonferonni corrections. In this example, I'm interested in determining whether

student GPA differs across major within level of citizenship. I'm less interested

in whether U.S. and non-U.S. students differ in GPA within a specific college

major. Therefore, I will hold the level of Citizenship constant and examine effects

that college Major has on student GPA. Because our data include three majors,

I will also conduct post-hoc pair-wise comparisons. As it turns out, the data in

this example fail to meet the assumption of homogeneity of variance, and the

Games-Howell post-hoc procedure makes adjustments for this fairly common

situation, thus I choose the Games-Howell post-hoc procedure.

There are competing schools of thought as to the most appropriate way

to conduct these follow-up analyses when an ANOVA interaction term is

significant. The more common approach that we see in the literature is to

conduct "simple-effects" analyses, and we will present this technique in the

pages to follow. Before we get to that however, I would like to present a

simpler alternative approach that clearly illustrates what the "simple-effects"

analysis does, with some caveats.

Remember that the "big picture" here is that our initial ANOVA revealed

a significant interaction of Major*Citizenship, meaning that the GPAdifference

by Major for U.S. citizens, are not the same as they are for non-U.S. citizens.

One way to clarify these effects would be to restrict our sample to only U.S.

citizens, and explore the GPA differences among the three college Majors,

then do the same thing for non-U.S. majors. The SPSS' "split-file" command

makes it particularly easy to conduct this sort of follow-up analyses, where

we are literally conducting two separate one-way ANOVAs—one per each

level of Citizenship. Figure 4a shows the abbreviated results of the two

follow-up one-wayANOVAs, with Split-File set to compare the results of U.S.

versus non-U.S. students. That is, the components of the ANOVA output for

U.S. citizens are combined together with the non-U.S. citizensANOVA output

so that it is easier to compare the effects of Major—precisely what we want

to do in order to better understand our interaction effect. In this case, the

ANOVAsummary tables show significant GPA differences across Major for

both U.S. (F= 15.30, p= .000) and non-U.S. (F= 11.72, p= .000) citizens.

However, the interesting and important results are in the post-hoc comparisons

that detail the pair-wise GPA differences by Major. These pair-wise effects

are illustrated in the line-chart that is imbedded in Figure 3. The data show

that U.S. Citizens majoring in U.S. History have a significantly higher mean

first-term GPA than U.S. Citizens majoring in either Business or History. On

the contrary, non-U.S. Citizens majoring in Math show the highest first-term

mean GPA, significantly higher than their non-U.S. Citizen counterparts

majoring in Business or U.S. History.

The above "split-file" approach to understanding the significant interaction

effects of major and citizenship on GPAprovides an intuitive understanding of
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Figure 4a

Follow-Up One-Way ANOVAs on Major, by Citizenship

Tests of Between-Subjects Effects

Dependent Variable: GPA after 1 term

Citizenship Source

y s Corrected Model

Intercept

MAJOR

Error

Total

Corrected Total

Other Corrected Model

Intercept

MAJOR

Error

Total

Corrected Total

Type III Sum
of Squares

9.134a

563.619

9.134

17.013

589.766

26.147

12.985b

509.889

12.985

31.572

554.446

44.557

df

2

1

2

57

60

59

2

1

2

57

60

59

Mean Square

4.567

563.619

4.567

.298

6.492

509.889

6.492

.554

F

15.301

1888.324

15.301

11.721

920.545

11.721

Sig.

.000

.000

.000

.000

.000

.000

a- R Squared = .349 (Adjusted R Squared = .326)

b. R Squared = .291 (Adjusted R Squared = .267)

Multiple Comparisons

Dependent Variable: GPA after 1 term
Games-Howell

Citizenship (I) MAJOR (J) MAJOR

Business

US History

Mean

Difference
Std. Error Sig. Lower Bound

95% Confidence Interval

Upper Bound
Math

Busin Math

US History

.3366

-■6063'

.19980

.09606

.232

.000

T1629
-.8406

US Histor> Math

Business

-.3366

-.94291

Math Business

US History

.6063'

.9429'

.19980

.20099

.232

.000

T836T
-.3720

.09606

,20099

-.8361

-1.4447

.000

.000

.3720

.4411

.1629

-.4411

.8406

1.4447
Other

Business Math

US History

.7010*

1.1285*

.23401

.18082

.017

.000

US History Math

Business

-.7010*

.4275

.23401

.28055

-1.1285*

-.4275

.18082

.28055

.017

^292

.1137

.6778

1.2884

1.5792

-1.2884

-.2589

.000

.292

-.1137

1.1139

-1.5792

-1.1139

-.6778

.2589

Based on observed means.

The mean difference is significant at the .05 level.

our data, and this approach can arguably suffice for publication in peer-reviewed

journals. In this case, the split-file approach is particularly attractive because

our data failed to meet the assumption of homogeneity of variance, and thus

we were able to employ the Games-Howell post-hoc technique on our pair-

wise comparisons, thus controlling for the unfortunate reality of heterogeneity

of variance that so often plagues research data. Nevertheless, many would

argue that this technique is flawed because we ran multiple analyses without

correcting for the inflated Type-I error rates. Therefore, we will turn our attention

to conducting the more popular "simple-effects" approach for follow-up
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Figure 4b

SPSS Simple-Effects

Follow-Up ANOVA Syntax and

Output on Major, by Citizenship

SPSS Syntax for Simple

NOVA

/EMMEANS a TABLESimajbrcIt) COMPARE(major) ADJ(SIDAK)
/CRITERIA = ALPHA(.O5)
/DESIGN = major cit major*cit,

Tests of Betweon-Subjects Effects

Dependent Variable: GPA after 1 term

Source

Corrected Mode

Intercept

major

tit

major * cit

Error

Total

Corrected Total

Type III Sum

of Squares

22.791 a

1072.835

5.384

.673

16.735

48.585

1144.211

71.376

df

5

1

2

1

2

114

120

119

Mean Square

4.558

1072.835

2.692

.673

8.367

.426

F

10.695

>517.284

6.316

1.578

19.633

Sig.

.000

.000

.003

.212

.000

a. R Squared = .319 (Adjusted R Squared = .289)

analyses of the same

data, and then discuss

some limitations to

either approach.

Conducting a

simple-effects follow-up

analysis on our GPA

data with SPSS

requires use of the

Syntax window, as the

appropriate code is not

available through their

graphical user

interface. The syntax

required to execute a

si mple-ef f ects

analysis, and the

relevant output is

presented in Figure 4b.

Note that the ANOVA

summary table in

Figure 4b is exactly the

same as in Figure 4a—

the omnibus F-test is

identical. However, the

Pairwise Comparisons

table and the Univariate

ANOVAtests in Figure

4b show slightly

different significance

values than the "split-

file" illustration in Figure

4a.

Let us first focus

on the Univariate Tests

in Figure 4b, in

comparison to the

Tests of Between-

Subjects Effects table in Figure 4a. Both the "split-file approach" (Figure 4a)

and the "simple-effects" analysis (Figure 4b) are attempting to do the same

thing—conduct a one-wayANOVAwithin level of citizenship. Note, however,

that the degrees of freedom-error (dfe) in these techniques are different. In

the "split-file" approach (Figure 4a), the dfe for U.S. and non-U.S. citizens

analyses are both equal to 57 (n per sub-group, minus k number of groups),

Dependent Variable: GPA after 1 term

Citizenship (I) major (J) major

U.S. Math Business

US History

Business Math

US History

US History Math

Business

Other Math Business

US History

Business Matti

US History

US History Math

Business

Pairwise Comparisons

Mean

Difference

(W)

.337

-.608*

-.337

-.943*

606"

.943*

.701*

1.129*

•701'

.427

-1.129*

-.427

Std. Error

.206

.206

.206

.206

.206

.206

.206

.206

.206

.206

.206

.206

Sig.0

.205

.012

.285

.000

.012

.000

.003

.000

.003

.117

.000

.117

95% ConfidsncG Interval for

Difference8
Lower Bound

-.164

-1.107

-.837

-1.443

.106

.443

.201

.626

-1201

-.073

-1.629

-.928

Upper Bound

.837

-.106

.164

-.443

1.107

1.443

1.201

1.629

-.201

.928

-.628

.073

Based on estimated marginal means

• The mean difference Is significant at (he .05 level.

3- Adjustment for multiplo cofnp8rison& Sidak.

Univariate Tests

Dependent Variable: GPA after 1 term

Citizenship

U.S. Contrast

Error

Other Contrast

Error

Sum of
Squares

9.134

48.585

12.985

48.585

df

2

114

2

114

Mean Square

4.567

.426

6.492

.426

F

10.716

15.233

Sig.

.000

.000

Each F tests the simple effects of major within each level combination of the other effects
shown. These tests are based on the linearly independent pairwise comparisons among the
estimated marginal means.

Note that the bold-face font in the syntax highlights the

command necessary to run the appropriate simple-

effects analysis using Sidak post-hoc comparisons.
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whereas the dfe in the univariate F-tests of the "simple-effects" analyses (Figure

4b) are both equal to 114. This difference is because of the way in which

these two approaches differ. The "split-file" approach discussed previously

makes no attempt at adjusting for the multiple comparisons that we conducted;

it merely repeats the one-way ANOVA command for either sub-sample. In

contrast, the "simple-effects" analysis bases the Univariate F-tests on the

marginal means reflected in the pairwise comparisons table (adjusted in this

case with Sidak corrections). Without getting into too much detail, this

technique is a method for analyzing simple effects of one (or more) factor(s)

on an outcome, within levels of another factor, while adjusting the dfe

accordingly in an attempt to correct for potential Type-I error risks. Because

there are six total pair-wise comparisons made in this model (U.S. Math vs.

U.S. Business, U.S. Math vs. U.S. History, U.S. Business vs. U.S. Math,

Non-U.S. Math vs. Non-U.S. Business, Non-U.S. Math vs. Non-U.S. History,

Non-U.S. Business vs. Non-U.S. Math), the dfe in the error terms of the

simple-effects analysis = n-6 (in our case 120-6=114). In our case, the p-

values of the Univariate F-tests in either of the two techniques are so

exceedingly small (p < .001) that the difference between the two analytic

approaches is not observable; both approaches show a significant overall

difference in student GPA across the three Majors—and this is true for U.S.

and Non-U.S. citizens. Note, however, that the "simple-effects" analysis is

more conservative because it makes the adjustment for inflated Type-I error

risk in its determination of dfe, and this is the primary reason why many prefer

the "simple-effects" approach.

Next, let us now turn our attention to pairwise comparisons table revealed

in Figure 4b from the simple-effects analysis, for this is where, in my opinion,

the "simple-effects" analysis has some notable disadvantages over the "split-

file" technique. The options for the type of post-hoc comparisons using the

"simple-effects" analysis are quite limited; one must choose the Bonferonni-

adjusted comparisons, the Sidak-adjusted comparisons, or the LSD

(unadjusted) pairwise comparisons. As discussed previously, the Bonferonni

adjustment is a conservative correction for multiple pairwise comparisons,

followed in level of conservatism by the Sidak-adjustment, and finally the

LSD comparisons, which are unadjusted pairwise comparisons. Figure 4b

shows the results of the Sidak pairwise comparisons. Note that the p-values

of the Sidak comparisons in Figure 4b vary slightly from the Games-Howell

comparisons in Figure 4a. If we were employing the usual critical alpha=.O5,

our significance-decisions on either approach would be the same, but in

situations in which differences among groups were not as dramatic as these

data, the two procedures could be at odds with one another on the results.

In contrast to the "simple-effects" analysis, the "split-file" approach

described earlier offers a wider variety in the types of post hoc choices.

Choices include the Bonferonni, Sidak, and LSD options available to "simple-

effects" analyses, but also including other popular post hoc tests (ex.Tukey's
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HSD), and the Games-Howell technique that adjusts for heterogeneity of

variance problems among the cells of a multi-factorial study. This, in my

opinion, represents a disadvantage of employing the "simple-effects" analysis

on multi-factorial data in which the assumption of homogeneity of variance

has been violated. When employing the "simple-effects" analysis, one does

not have the option to run pairwise contrasts that adjust for heterogeneity of

variance, like the Games-Howell, Dunnett's, or others, and this is a common

situation in many disciplines, including Institutional Research and

Assessment. Another advantage of the "split-file" approach is that in higher-

order factorial designs (those with more than two factors), the "split-file"

approach allows us to evaluate lower-order interaction terms, whereas the

"simple-effects" analysis does not.

A major disadvantage of the "split-file" approach is that it fails to adjust

for inflated Type-I error risk in running the two subsequent one-wayANOVAs

(one per level of our Citizenship factor), but it has the advantage of allowing

us to correct for heterogeneity of variance among the levels of our other factor

(choice of major). On the other hand, the "simple-effects" analysis does

adjusttor the inflated Type-I error risk, but it does not make adjustments for

homogeneity of variance situations. Alas, the analyst is forced to weigh the

pros/cons of the two approaches. Unfortunately, we cannot provide an answer

to this dilemma that will satisfy all situations, although most statisticians

lean towards the use of "simple-effects" analysis in favor of the Type-I error

reduction, and then defend the notion that ANOVA has been shown to be

robust to violations of homogeneity of variance in Monte Carlo studies. For

this reason, we will conduct "simple-effects" analyses in future illustrations

that warrant follow-up analyses.

Regardless of which approach we take, it is clear that had we not

explored the effects of the significant Major by Citizenship interaction term in

the beginning, when we noticed a significant main effect for Major, we would

have missed valuable information in understanding the relative student

performance attributable to their national origin.

Three-Factor Independent Measures ANOVA Designs

As illustrated above, the ANOVA statistic is capable of parsing out the

effects of two factors (main effects) on a continuous outcome variable, and in

addition to evaluating these main effects, ANOVA also provides an analysis

of the interaction between them. Indeed, ANOVAcan expand this concept to

three, four, or even more factors. And with a little practice, the reader will

quickly surmise that running these more complexANOVA models is no more

difficult than running a two-factor design. However, understanding these more

complex ANOVA models can become an arduous task. For example, a

study examining the effects of three independent factors; gender, race/

ethnicity, and student level (freshmen, sophomore, junior, senior), would involve

an assessment of seven potentially meaningful effects:
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• Three main effects

♦ Gender

♦ Race/ethnicity

♦ Student level (freshmen, sophomore, junior, senior)

• Three two-way interaction effects

♦ Gender * Race/ethnicity

♦ Gender * Student level

♦ Race/ethnicity * Student level

• One Three-way interaction effect

♦ Gender * Race/ethnicity * Student level

Our approach to such a design would be to first evaluate the significance

of the three-way interaction term. This is the highest-order term in this model,

and if significant, it would qualify any other significant effects in the model, so

we must start here. A significant three-way interaction term is a very complex

effect that could require subsequent analyses based on the same logic

described in the two-factorANOVA paragraphs above. We would first need

to hold one factor constant, then run separate two-factor ANOVAs on the

subsequent factors. Each of these two-factor designs would be evaluated

separately, possibly requiring additional follow-up One-WayANOVA statistics,

until we have fully broken down the model to its elemental effects. If the

three- way interaction term in the original model were not significant, then we

would look to the three two-way interaction terms and evaluate each of them

accordingly, with potential One-WayANOVA follow-up analyses.

Let us work through an example of the simplest of three-factorANOVA

designs—one in which all three factors have only two levels. In this example,

the analyst is asked to determine whether or not there is a gender bias in

faculty salaries in a study that uses tenure status (tenured, not) and

department (Women's Studies, Biology) as two additional factors that may

affect salary. Thus, this is a 2 (gender) x 2 (tenure status) x 2 (Department:

Biology, Women's Studies) completely independent measures factorial ANOVA

design, using faculty salary as the outcome variable. Note that these data

again are fictitious—generated to illustrate the procedure of conducting and

interpreting a 3-factorANOVA statistic. To simplify matters, I have chosen to

compare only two departments.

Figure 5 shows the SPSS output of the 3-factor omnibus F-test on

these faculty salary data. The ANOVA summary table reveals a significant

three-way interaction involving gender, tenure status, and department (F=

7.18, p= .009). This significant interaction means that all three factors have

an impact on faculty salary, and so to interpret faculty salary by any of the

lower-order interaction terms or main effect terms would be potentially

misleading because those effects fail to capture the entire picture of salary

differences caused by gender, department, and tenure status. To better

understand this complex interaction, it is necessary to a run simple-effects
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Figure 5

Three-Factor Completely Independent Measures

ANOVA on Faculty Salary

Descriptive Statistics

Dependent Variable: SALARY

SEX TENURE DEPT

Female Untenured Woman's Studies

Biology

Total

Tenured Woman's Studies

Biology

Total

Total Woman's Studies

Biology

Total

Male Untenured Woman's Studies

Biology

Total

Tenured Woman's Studies

Biology

Total

Total Woman's Studies

Biology

Total

Total Untenured Woman's Studies

Biology

Total

Tenured Woman's Studies

Biology

Total

Total Woman's Studies

Biology

Total

Mean

35353.90

30405.30

32879.60

45405.40

47142.60

46274.00

40379.65

38773.95

39576.80

34680.30

38834.20

36757.25

43543.20

61705.30

52624.25

39111.75

50269.75

44690.75

35017.10

34619.75

34818.43

44474.30

54423.95

49449.12

39745.70

44521.85

42133.78

Std.

2928.690

2924.151

3815.441

2960.507

1392.477

2421.631

5899.330

8870.688

7480.085

2342.079

4568.788

4126.339

2165.393

3979.357

9824.854

5048.832

12451.629

10948.775

2603.962

5712.646

4386.643

2699.130

8014.230

7760.362

5457.619

12155.452

9665.491

N

10

10

20

10

10

20

20

20

40

10

10

20

10

10

20

20

20

40

20

20

40

20

20

40

40

40

80

Levene's Test of Equality of Error Variances a

Dependent Variable: SALARY

I F
| 1.783

df1

7

df2

72

Sig.

.104

Tests the null hypothesis that the error variance of the

dependent variable is eaual across arouDs.

a. Design: Intercept+SEX+TENURE+DEPT+SEX

* TENURE+SEX * DEPT+TENURE *

DEPT+SEX * TENURE * DEPT

Tests of Between-Subjects Effects

Dependent Variable: SALARY

Source

Corrected Model

Intercept

SEX

TENURE

DEPT

SEX * TENURE

SEX * DEPT

TENURE* DEPT

SEX * TENURE * DEPT

Error

Total

Corrected Total

Type III Sum of
Squares

6707882432.750a

142020399660.1

523049692.050

4281147649.800

456232176.450

30568753.800

814560188.450

535302045.000

67021927.200

672433641.200

149400715734.0

7380316073.950

df

7

1

1

1

1

1

1

1

1

72

80

79

Mean Square

958268918.964

142020399660

523049692.050

4281147649.8

456232176.450

30568753.800

814560188.450

535302045.000

67021927.200

9339356.128

F

102.605

15206.659

56.005

458.399

48.850

3.273

87.218

57.317

7.176

Siq.

.000

.000

.000

.000

.000

.075

.000

.000

.009

a- R Squared = .909 (Adjusted R Squared = .900)
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analysis and determine the simple effects on salary within levels of one of our

factors. Again, the choice of which factor to hold constant is largely dependent

on the initial research question. Because we were charged to look for "gender

biases" across the other factors, it is probably not a good idea to hold gender

constant and look for salary differences across departments or by tenure

status. Instead, I choose to hold department constant and examine the

simple effects of gender and tenure status upon faculty status within

departments. Figure 6 shows the results of our simple-effects follow-up

analysis, where we can more clearly see that the effects of gender and tenure

status on faculty salaries are not mirrored in these two departments. The.

results of our simple-effects analysis of faculty salaries in the Women's Studies

department are straightforward—there are no significant gender differences

in salary for the untenured or tenured faculty members in this department.

However, our analysis of faculty salaries in the Biology department

reveals a very different story. Here, we see that there is a significant gender

difference in salaries for both tenured and untenured faculty. Men receive

higher salaries than women regardless of tenure status. Note that the two

line-charts (scale-equilibrated) on the bottom of Figure 6 illustrate clearly this

three-way interaction effect. In the Women's Studies department, the lines

representing male and female faculty are very close to each other and parallel,

but the lines representing male/female faculty in the Biology department are

quite far apart, with male mean salaries higher than female mean salaries in

both tenured and untenured faculty. The next challenge, of course, would be

to speculate as to why a gender bias of this sort exists in the Biology

department, and what sort of institutional practices may be promoting such

discriminatory practices.

By now the reader should be able to appreciate that running three, four,

or higher-order factorial ANOVA designs is not a trivial undertaking. With

enough time and concentration, it is possible to deeply explore such effects,

but the real task is yet to come—when the need to explain such complex

results to a potentially less statistically motivated and trained audience arises.

I will end this chapter with some tips on how to make this task easier, though

in general I tend to avoid three-factorANOVA designs, and I draw the line at

four factor designs entirely. It has been my experience that most research

endeavors involving more than three factors can usually be reduced to fewer

factors, or split into smaller, more manageable sub-studies, which, when

taken together, represent a far better understanding of the issue than a single

large study.

Repeated Measures ANOVA Designs

Thus far, all of the designs that we have discussed involved comparisons

of independent groups of observations—males and females, U.S. and non-

U.S. Citizens, tenured and untenured faculty members. However, the ANOVA

is not restricted to comparing independent groups of subjects. ANOVA can
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Figure 6

Follow-Up Two-Factor Simple-Effects ANOVAS on Faculty Salary

by Tenure and Gender, within Department

Estimates

Dependent Variable:

dept

Woman's Studies

Biology

salary

sex

Female

Male

Female

Male

tenure

Untenured

Tenured

Untenured

Tenured

Untenured

Tenured

Untenured

Tenured

Mean

35353.900

45405.400

34680.300

43543.200

30405.300

47142.600

38834.200

61705.300

Std. Error

966.403

966.403

966.403

966.403

966.403

966.403

966.403

966.403

95% Confidence Interval

Lower Bound

33427.410

43478.910

32753.810

41616.710

28478.810

45216.110

36907.710

59778.810

Upper Bound

37280.390

47331.890

36606.790

45469.690

32331.790

49069.090

40760.690

63631.790

Pairwise Comparisons

[Dependent Variable: salary

dept

Woman's Sti

Biology

tenure

idles Untenured

Tenured

Untenured

Tenured

(I) sex

Female

Male

Female

Male

Female

Male

Female

Male

(J)sex

Male

Female

Male

Female

Male

Female

Male

Female

Mean

Difference

(I-J)

673.600

-673.600

1862.200

-1862.200

-8428.900*

8428.900*

-14562.700*

14562.700*

Std. Error

1366.701

1366.701

1366.701

1366.701

1366.701

1366.701

1366.701

1366.701

Sig.a

.624

.624

.177

.177

.000

.000

.000

.000

95% Confidence Interval for

Difference a

Lower Bound

-2050.868

-3398.068

-862.268

-4586.668

-11153.368

5704.432

-17287.168

11838.232

Upper Bound

3398.068

2050.868

4586.668

862.268

-5704.432

11153.368

-11838.232

17287.168

Based on estimated marginal means

*• The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Sidak.

Unlvariate Tests

Dependent Variable: salary

dept tenure

Woman's Studies Untenured Contrast
Error

Tenured Contrast

Error

Biology Untenured Contrast

Error

Tenured Contrast

Error

Sum of

Squares

2268685

6.72E+08

17338944

6.72E+08

3.55E+08

6.72E+08

1.06E+09

6.72E+08

df

1

72

1

72

1

72

1

72

Mean Square

2268684.800

9339356.128

17338944.20

9339356.128

355231776.1

9339356.128

1060361156

9339356.128

F

.243

1.857

38.036

113.537

Sig.

.624

.177

.000

.000

Each F tests the simple effects of sex within each level combination of the other effects shown. These tests are

based on the linearly independent pairwise comparisons among the estimated marginal means.

Estimated Marginal Moans of salary

at dept = Woman's Studies

Estimated Marginal Means of salary

at dept = Biology

Untenured Tenured
tenure

Untenured Tenured
tenure
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also be put to the task of comparing repeated observations collected from

the same individuals, commonly referred to as "pre/posf designs, or "repeated

measures" designs. I will refer to these kinds of factors as repeated-measures

designs (Figure 7).

Figure 7

Repeated-Measures

Experimental Designs

An example of the simplest of repeated-measures designs might involve

comparing student learning outcomes as measured by some reliable

assessment instrument (e.g., "pre" versus "post" participation in a college

program designed to improve student learning). With only two repeated

observations (pre, post), such a simple design could easily be analyzed

using the repeated-measures t-test, a modification of the independent-

measures t-test that accounts for the correlation of repeated observations

within subject.

However, if there is more than one repeated observation (ex. pre, posti,

post2), then a more sophisticated ANOVA approach is necessary, just as we

needed ANOVA to compare three or more independent groups in our

discussion of the one-way IM-ANOVA. Repeated measuresANOVA is also

useful when we want to examine the effects of more than one experimental

condition (ex. different teaching modalities) on some outcome variable,

controlling for potential differences among groups of individuals by using the

same individuals across the various conditions (see Figure 7).

The general logic of the ANOVA approach for repeated-measures is

very similar to IM-ANOVA, with one important distinction. Repeated-Measures

ANOVA is evaluated by an F-ratio, where the numerator represents the

differences across condition or time, and the denominator represents variation

due the sample, plus error. A major difference in the calculations of the RM-

ANOVA, however, is that because we are taking measurements from the

same sampleon repeated occasions, variability due to individual differences
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are constant across time or condition, and thus variance attributable to

individual differences is effectively removed from the model. Remember that

because the Individual Differences (IDs) are components of variance in both

the numerator and denominator, if the assumption of homogeneity of variance

(sphericity) is met, they cancel each other out and are effectively removed

from the model. The result is a statistical test that is more powerful than its

independent-measures counterpart. This is an experimental design reality,

and is a strength of repeated-measures statistical designs over independent-

measures designs. This is not a property of the statistic; it is a property of all

repeated-measures designs. Repeated-Measures designs (sometimes

referred to as dependent-measures) are common in many literatures, including

education literature, partly due to their intuitive appeal and simple application.

"Pre/post" designs in which we measure something, intervene with an

educational or other type of intervention, and then measure the same thing

again—all with the same subjects—have a certain appeal. If we find a

statistical difference pre-to-post, then it is fairly easy to accept the likelihood

that our intervention was the cause of the change. One cannot argue that the

observed difference is possibly due to the random effect of having a "better"1

sample in one group relative to the other, because we only have one group!

Also, repeated measures designs require fewer subjects to detect the effect

of an intervention—partly because we only need one sample, but also because

the statistic is more powerful to begin with.

The data set preparation for a RM-ANOVA requires that the repeated

observations be represented as separate columns in the data set, whereas

before with IM-ANOVA, we had a single column representing our outcome

variable, with grouping variables making up other columns. Also, because

RM-ANOVA is technically a member of the "multivariate ANOVA" family of

statistics, running a RM-ANOVA on modern statistical software, such as

SPSS, usually requires commands executed from different menu options or

syntax structure. Nevertheless, interpreting and understanding RM-ANOVA

results is only subtly different from that of the IM-ANOVA, and the reader

should be pleasantly surprised at how simple this task is, given the knowledge

gained thus far.

Using Single-Factor Repeated-Measures ANOVA Where Time is the

RM-Factor

We began our illustrations of IM-ANOVA with the simplest of designs,

called the "one-way"ANOVA design, in which we compared three independent

groups on a single factor. Repeated-MeasuresANOVA has a corollary design,

though it does not have a special name, in which we can compare three (or

more) repeated observations taken from the same group under different

circumstances or over time. The example we will use to illustrate this design

is one in which the researcher is interested in comparing student satisfaction

ratings overtime, as they progress from freshman to sophomore, junior and
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finally, senior status. Note that in this design, I am measuring student

satisfaction among the same group of students, once per year for four years.

By definition, this is a hypothetical longitudinal study that requires all subjects

to proceed through the repeated observational levels before the final analysis

can begin.

In addition to the ANOVA assumptions discussed in the beginning of

this chapter, note that for RM-ANOVA designs, subjects must provide data

for each repeated observation level in order to be included in the analysis.

This can represent a disadvantage of utilizing such an approach, as subject

attrition can become a serious issue in longitudinal studies. Nevertheless,

assume that we have a sample of n=30 students who provided ratings of

satisfaction with some aspect of student learning or living at their university

on four separate occasions (as freshmen, sophomores, juniors, and seniors).

Figure 8 shows the SPSS output of a RM-ANOVAanalysis of these hypothetical

student evaluations. Because this design has no independent factors, Levine's

test for homogeneity is not appropriate. However, RM-ANOVA has a similar

assumption that the variance across pairs of observation be constant.

Mauchly's test of sphericity tests the null-hypothesis of constant pairwise

variance, and here we have a non-signficant Mauchly's, indicating that our

data meet this assumption.

Also notice that the output for the RM-ANOVA statistic produces two

ANOVAsummary tables—one for repeated-measures factors (called "Within-

Subjects" on SPSS output), another for independent-measures factors (called

"Between-Subjects" on SPSS output). Our design only has a single repeated-

measures factor, so we can ignore the between-subjects ANOVA table for

now. Because we met the sphericity assumption in this data, we can interpret

the rows labeled "sphericity assumed" from the within-subjects ANOVA

summary table. Thus, the overall effect for students' satisfaction ratings

changing over time is shown by the F= 23.7, p = .000, a significant result.

This provides statistical evidence that student perceptions are changing

significantly over time; however, it does not provide the details about pair-

wise comparisons of student satisfaction.

Caveate: Using Apriori Contrasts with Repeated-Measures Designs

In our discussion of the IM-ANOVA, we addressed using Post-Hoc

comparisons (such as the Tukey's HSD, Games-Howell, LSD, and others)

as a logical extension to a significant omnibus F-test, in order to determine

which pairs of groups differed statistically from one another. Repeated-

Measures designs cannot take advantage of the commonly recognized post-

hoc statistical tests because they fail to account for the within-subject

correlation across multiply repeated observations. However, there are

statistical alternatives to the post-hoc test for repeated measures designs,

called "apriori contrasts."

Like post-hoc tests, apriori contrasts are used to make multiple
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Figure 8

Single-Factor Repeated-Measures ANOVA on Student Satisfaction

during Four Repeated Observations

Ooocriptivo Statistics

FRESH

SOPH

JUNIOR

SENIOR

Mean

6.77

4.67

4.13

6.47

Stri.

Deviation

1.569

1.561

1.137

1.717

N

30

30

30

30

Mauchty'8 Teat of Sphericity b

Measure: MEASURE_1

Within Subjects Effect

TIME

Mauchl/sW

.769

Approx.

7.270

df

S

Sig.

.202

Epsilon0

Graenhous

e-Geisser

.842

Huynh-Fekfl

.929

Lower-bound

.333

Tests (he null hypothesis that the error covarianca matrix of the orthonormalized transformed dependent variables is proportional

to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in

the Tests of Within-Subjects Effects table.

°- Design: Intercept

Within Subjects Design: TIME

Tests of Within-Subjects Effects

Measure: MEASUREJ

Source

TIME Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

ErrorfTIME) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Type III Sum

of Squares

153.025

153.025

153.025

153.025

187.225

187.225

187.225

187.225

df

3

2.527

2.788

1.000

87

73575

80.846

29.000

Mean Square

51.008

60.563

54.891

153.025

2.152

2.555

2.316

6.456

p

23.703

23.703

23.703

23.703

Siq.

.000

.000

.000

.000

Tests of Within-Subjects Contrasts

Measure: MEASURE 1

Source

TIME Linear

Quadratic

Cube

ErrorfTIME) Linear

Quadratic

Cube

Type Id Sum

3.082

147.408

2.535

65.668

72.342

49.215

df

1

1

1

29

29

29

Mean Square

3.082

147.408

2.535

2.264

2.495

1.697

F

1.361

59.092

1.494

Sig.

.253

.000

.231

Tests of Between-Subjects Effects

Measure: MEASUREJ

Transformed Variable: Average

Source

Intercept

Error

Type III Sum

of Squares

3641.008

77.742

df

1

29

Mean Square

3641.008

2.681

F

1358.207

Sig.

.000

Senior
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comparisons across the levels of a repeated-measures observation, while at

the same time holding experiment-wise alpha risk = .05. There are different

types of contrasts, and they test different apriori hypotheses about patterns

of change over time. SPSS and other software manufactures make the most

commonly used contrasts available from their "point and click" menu systems,

and because of page limitation constraints, I will limit my discussion of

contrasts to these common choices.

However, it is possible to create custom contrasts that address other

hypotheses, and the reader should review the latest syntax guides for their

preferred statistical software if custom contrasts are necessary. Note that

apriori contrasts can also be used to test for differences across multiple

levels of an independent-measures factor, but there are limitations to these

procedures that make them less popular choices for IM-ANOVA applications.

Most notably, apriori contrasts do not make all possible pairwise comparisons

across the levels of a factor, but instead test for pre-determined difference, or

predicted patterns of differences among levels of the factor. Many times the

institutional researcher would rather choose to compare all possible pairs of

a factor, and so in IM-ANOVA situations, often choose post-hoc pairwise

tests over apriori contrasts.

Because our current example is a RM-ANOVA design, we must rely on

apriori contrasts as a follow-up to a significant omnibus F-test. In our current

example, I have chosen polynomial contrasts because I am most interested

in learning about the trend of change over time, and did not have specific

ideas or hypotheses about how satisfaction might change. Polynomial

contrasts are appropriate in instances where one wants to capture the overall

pattern of change in predictable ways. These contrasts test for the fit of

polynomial functions to the repeated observations in increasing complexity,

starting with a simple linear function, then testing the quadratic, cubic, quartic,

and potentially more complex geometric polynomial functions depending on

the number of repeated observations included in the model. Polynomial

contrasts test for k-1 number of contrasts, beginning with linear, quadratic,

cubic, and so on—each increasing in polynomial complexity. For example,

three polynomial contrasts can be tested on a study with k=4 repeated

observations (linear, quadratic, cubic). Four polynomial contrasts can be tested

on a study with k=5 repeated observations (linear, quadratic, cubic, quartic).

As Figure 9 shows, our linear and cubic trend contrasts are not

significant, but the quadratic trend contrast is (F= 59.05, p = .000). The

means chart at the bottom of Figure 7 illustrates this effect nicely, where

student satisfaction starts high, dips during sophomore and junior years,

then rises again as seniors—the typical "U-shaped" quadratic function. With

this information, we not only know that satisfaction changes over time

(evidenced by our Omnibus F-test), but also we have an understanding of

just howstudent satisfaction changes during their time at the university.
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There are other commonly used apriori contrasts that we could have

chosen, depending on our original research goals. If we were interested in

comparing student performance in a 'typical" classroom environment, for

example, to the same sample of students whose performance is also

assessed in two or more "experimental" classroom environments, we would

choose apriori contrasts that compare all experimental environments to the

typical classroom using simple contrasts, with the typical condition serving

as the reference condition. Or, if we had an apriori hypothesis that required a

comparison of environment to the mean of the other environments, we would

choose Helmert or reverse Helmert contrasts. Finally, if we hypothesized

statistically significant difference on adjacent levels of a repeated measure,

the repeated contrasts can test our hypothesis. If the researcher wanted to

test an apriori hypothesis that doesn't lend itself to these commonly used

methods, modern statistical software offers the ability to set up custom

contrasts that can make the necessary comparisons while holding the alpha

risk to .05, though there are restrictions concerning the number of

comparisons the researcher can make, which depends on the number of

levels in the repeated measures factor. Custom contrasts are not particularly

difficult to create using SPSS, SAS and other software packages; however, it

usually requires using the syntax method of running statistical analyses

instead of the more popular menu-driven graphic user interface. Generally

the user is restricted to a number of comparisons equal to the number of

levels/groups-1, and as mentioned previously, this restriction is a major

difference between apriori and post-hoc comparisons.

Using Single-Factor Repeated-Measures ANOVA Where Condition is

the RM-Factor

In the previous RM-ANOVA example, students were measured

repeatedly several times to determine whether self-reported satisfaction

changes over time. In that example, time was the repeated measures factor.

Repeated-MeasuresANOVAcan also be used to test hypotheses comparing

some continuously measured outcome across different conditions. Note

that we are still discussing experimental designs in which the same subjects

are measured repeatedly. However in this next example, the repeated

measurements are taken under different conditions so that we can establish

whether or not there is statistical evidence that these conditions produce

different results. This type of design is most similar to the Independent-

Measures experimental designs that compare outcomes generated from

different groups of subjects representing the different conditions, with the

important distinction that with RM-designs, the same subjects are assessed.

This next example uses data collected to assess a new teaching/

learning paradigm for teaching students how to interpret information embedded

on a microscopic biological sample. These data were collected from students

who were undergoing laboratory instruction on how to interpret such
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information. Students historically learn how to read biological samples by

instruction and practice using traditional microscope labs; however, there are

also novel computer software programs that effectively mimic what a student

would see through a traditional microscope on a computer terminal. We

wanted to compare several aspects of student learning and perceptions through

the use of the computer-simulated microscope to their learning and perceptions

using a real microscope. For several reasons, we believed that students

would enjoy using the computer more than the microscope, leading to more

practice efforts on the computer, and ultimately better learning. To test our

hypotheses, n=114 students were exposed to both methods of instruction for

half of a quarter, after which we measured several aspects of student preference

and student learning. We compared student outcomes using several

Repeated-Measures ANOVA statistic, one per outcome measure.

We believed that a positive learning experience would ultimately lead to

better student learning, so we asked students about their laboratory

experiences at the end of each half-quarter course. Student responses to

several Likert-type questions assessing how much they liked using the

traditional microscope and the computer simulations were averaged to create

our outcomes measures for this analysis. The results of this analysis are

presented in Figure 9, where the data show significantly more positive student

experience using the computer-simulated microscope relative to the traditional

microscope (F = 4.6, p = .034). We compared other aspects of student

enjoyment and student learning, and consistently found more positive

outcomes associated with the computer-simulated microscope experience

relative to the traditional microscope. Our analyses of these outcomes were

similar to the above analysis, that student perceptions and learning outcomes

consistently favored the simulated learning modality over the traditional

microscope. Such consistent results on different measures of student

perceptions and learning can (and did) make for a compelling case for

curriculum change.

Note that this design only compared two conditions, thus we could

have used a repeated-measures t-test for this analysis. In reality, our statistical

design was a bit more complicated than illustrated here; however, the data

set lends itself nicely into a comparison of a repeated-measures t-test to

RM-ANOVA. Note that the bottom half of Figure 7 also shows the results of

repeated-measures t-test on these data. In situations like this, when there

are only two levels of the factor of interest, the F-statistic will be equal to the

square of the t-statistic, and the probability values associated with each

statistic will be the same. I present this merely as an illustration that either

the statistic is appropriate, and although the statistical calculations are different,

the statistical significance is the same, and thus the same hypothesis testing

decision will be made.
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Figure 9

Results of Two Statistical Techniques for Comparing Student

Experiences Under Two Different Learning Modalities: Repeated

Measures ANOVAversus Repeated Measures T-Test

Descriptive Statistics

My experience w/scope was positive

My experience with computer was positive

Mean

5.43

5.67

Std.
Deviation

1.58

1.46

N

114

114

Tests of Within-Subjects Effects

Measure: MEASUREJ

Source

LEARNBY Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Error(LEARNBY) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Type III

Sum of

Squares

3.197

3.197

3.197

3.197

78.303

78.303

78.303

78.303

df

1

1.000

1.000

1.000

113

113.000

113.000

113.000

Mean

Square

3.197

3.197

3.197

3.197

.693

.693

.693

.693

F

4.614

4.614

4.614

4.614

Sig.

.034

.034

.034

.034

Paired Samples Test

Pair My experience

1 w/scope was positive -

My experience with

computer was positive

Paired Differences

Mean

-.24

Std.

Deviation

1.177

Std. Error

.110

95% Confidence

Interval of the
Difference

Lower

-.46

Upper

-.02

t

-2.148

df

113

Sig. (2-tailed)

.034

Factorial Repeated-Measures ANOVA Designs

As with Independent-Measures ANOVA, Repeated-Measures ANOVA

can easily be expanded to address experimental designs with two, three, or

more repeated-measures factors, though such designs are less common.

And similar to IM-ANOVA, these factorial designs provide an evaluation of

the main effects for each repeated-measures factor, and the interaction effects

involving them. These designs are sometimes referred to as nested designs,

higher-order designs, or doubly repeated-measures designs, because the

repeated observations are hierarchical in nature.

The approach to higher-order RM-ANOVA analyses is similar to our

earlier discussion of higher order IM-ANOVA designs. We concern ourselves

first with any significant interaction effects that emerge from the model, running

follow-up analyses where justified, until we have a thorough understanding of

the multifactor effects on the outcome.

Multifactorial designs involving only repeated-measures factors are less

common than completely independent-measures designs, or mixed-model
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designs that involve independent- and repeated-measures factors, yet the

strategy for analyzing the effects in these designs remains essentially the

same. I will move next to a mixed-model ANOVA example.

Mixed-Model ANOVA Designs

The term mixed-model refers to experimental designs that involve at

least one independent-measures factor, and at least one repeated-measures

factor. These designs are common in the educational and social sciences

literature and the strategy for analyzing these hybrid designs is consistent

with our discussions of two-factor and higher-order designs discussed above.

To illustrate, consider a two-factor mixed-model design involving the

independent-measure factor comparing alumni who graduated from one of

two majors (Pre-Medicine, Engineering), crossed with a repeated-measure

factor of multiple self-reported assessments reporting intellectual growth over

time since graduation (three, five, seven years). Thus we have a 2 (major:

Pre-Med, Engineering) x 3 (Time: 3,5,7 years since graduation) mixed-model

ANOVA design with one independent-measures factor (major) and one

repeated-measures factor (time since graduation). The outcome measure in

this hypothetical study is alumni self-reported measures of intellectual growth.

Assume that we collected these repeated self-assessments from n=25 Pre-

Med alumni, and n=25 Engineering alumni.

The results of this two-factor, mixed-model design are shown in Figure

112. Note that because we have both repeated- and independent-measures

factors, both of the ANOVAsummary tables contain relevant information for

our consideration. However, any interactions involving a repeated-measures

factor will be shown in the within-subjects ANOVA summary table, so it is

there that we will focus our attention first.

In this example, note that we have a significant Years (since graduation)

* Major interaction effect (F= 4.92, p = .009). We also have a significant

effect for Years since graduation, and a non-significant Major effect but these

effects are qualified by the significant interaction term in our model, suggesting

the need to further reduce our model.

The significant interaction term tells us that the pattern of changing

self-reports of intellectual growth overtime for Pre-Med graduates is not the

same as the pattern of changing intellectual growth for Engineering graduates

(see line chart in Figure 10a). As discussed previously, one school of statistical
thought would be to stop here and interpret the means data accordingly.

Alternatively, with a significant interaction effect justifying a subsequent

analysis, we could hold one factor constant and examine the simple-effects

on the remaining factor. In this case, I chose to examine the simple-effects

of time on intellectual growth, holding major constant (Figure 10b). The

simple-effects analyses revealed no significant differences on intellectual

growth between three, five and seven years since graduation for Engineering

alumni. However, Pre-Medicine graduates' self-reported significantly higher
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Figure 10a

Two Factor Mixed-Model ANOVA Comparing Self-Reported

Intellectual Growth by Major and Over Time Since Graduation

Descriptive Statistics

MAJOR

Intel Growth @ 3 yrs. Pre-Med

Engineering

Total

Intel Growth @ 5 yrs. Pre-Med

Engineering

Total

Intel Growth @ 7 yrs. Pre-Med

Engineering

Total

Mean

6.0851

7.2071

6.6461

6.8926

6.7837

6.8381

8.3640

7.4968

7.9304

Std.

Deviation

1.13133

1.78875

1.58593

1.60953

1.90866

1.74820

1.07089

1.54049

1.38416

N

25

25

50

25

25

50

25

25

50

Tests of Within-Subjects Effects

Measure: MEASURE 1

Source

YEARS Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

YEARS * MAJOR Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Error(YEARS) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Type III Sum

of Squares

47.990

47.990

47.990

47.990

25.197

25.197

25.197

25.197

245.895

245.895

245.895

245.895

df

2

1.993

2.000

1.000

2

1.993

2.000

1.000

96

95.660

96.000

48.000

Mean Square

23.995

24.081

23.995

47.990

12.598

12.643

12.598

25.197

2.561

2.571

2.561

5.123

F

9.368

9.368

9.368

9.368

4.919

4.919

4.919

4.919

Sia.

.000

.000

.000

.004

.009

.009

.009

.031

Tests of Between-Subjects Effects

Measure: MEASUREJ

Transformed Variable: Average

Source

Intercept

MAJOR

Error

Type III Sum

of Squares

7643.104

.089

95.696

df

1

1

48

Mean Square

7643.104

.089

1.994

F

3833.694

.044

Siq.

.000

.834

Estimated Marginal Means of MEASURE_1

major

Pre-Med

— Engineering
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Figure 10b

Follow-Up Simple-Effects Repeated-Measures ANOVA Results on

Intellectual Growth by Time Within Level of Major

Descriptive Statistics

Intel Groi

Intel Grov

vth

vth

@ 5 yra.

@ 7 yrs.

MAJOR

Pre-Med

Engineering

Total

Pre-Med

Engineering

Total

Pre-Med

Engineering

Total

6.O851

7.2O7 1

6.6461

6.8026

6.7837

6.8381

8.364O

7.4968

7.93O4

Std.

1.131 33

1.78875

1.58593

1.6O953

1.9O866

1.7482O

1.O7O89

1.54O49

1 .38416

25

25

5O

25

25

5O

25

25

5O

Measure: MEASURE_1

Tests of Within-Subjects Effects

Source

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

YEARS * MAJOR Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bou nd

Error(YEARS) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Type III Sum

of Squares

47.99O

47.99O

47.99O

47.99O

25.197

25.197

25.197

25.197

24 5.895

245.895

245.895

245.895

df

2

1.993

2.OOO

1.OOO

2

1.993

2.OOO

1.OOO

96

95.66O

96.OOO

48.OOO

Mean S<

2.

2'

2:

4"

1:

1:

1:

2«

^uare

3.995

».O81

3.995

f.99O

2.598

2.643

2.598

5.197

2.561

2.571

2.561

5.123

F

9.368

9.368

9.368

9.368

4.919

4.919

4.919

4.919

.OOO

.OOO

.OOO

.004

OO9

OO9

OO9

Tests of Between-Subjects Effects

Measure: MEASUREJ

Transformed Variable: Averag

Source

Intercept

MAJOR

Error

Type III Sum

of Sauares

7643.104

.089

95.696

df

1

1

48

Mean Square

7643.104

.089

1.994

F

3833.694

.044

.000

.834

Estimated Marginal Means of MEASUREJ

major

Pre-Med

Engineering

Note that SPSS is representing the levels of the repeated-measures factor

(years) as 1,2 and 3, representing three, five, and seven years post-graduation.

intellectual growth between years three and seven post-graduation (p= .000).

Judging from the means data, this intellectual growth appears to be fairly

linear (see line chart on Figure 10). From these analyses we can conclude

that Pre-Medicine graduates report a linear increase in intellectual growth

from three to seven years post-graduation, resulting in significantly higher

self-reported intellectual growth at year seven compared to year three, yet

Engineering graduates report relatively consistent intellectual growth over
this time period.

81



Using Covariates in Factorial ANOVA Designs

By now the reader should recognize the power and flexibility of ANOVA

to handle both independent- and repeated-measures factors, in combination

or alone, and to address virtually any factorial design for hypothesis testing.

We have illustrated through numerous examples how one can apply the

ANOVA statistic to answer fairly complex questions about differences between

and within groups, overtime and across multiple conditions. ANOVA is also

capable of incorporating continuous measures into the statistical model in

order to adjust for potential differences on this measure in the evaluation of

the effects on the other factors in the model. It is important to recognize the

difference between factors and covariates. Factors are categorical ways of

distinguishing between groups of subjects (e.g., gender, male vs. female) or

between distinct observational time periods (e.g., pre vs. post), whereas, a

covariate is something that is measured on a continuous scale (e.g., age).

In ANOVA, including covariates in a model is typically done to remove the

potential effects of the covariate on the outcome, so that a more sterile

assessment of the main effects and interactions involving the factors is

possible. Incorporating a covariate in an ANOVA design is a means for

statistically removing any effects attributable to the covariate so that the

"adjusted means" can be evaluated against the factors in the model.

To illustrate an ANOVA using a covariate, recall our earlier example that

compared faculty salaries by department, tenure status, and gender. Our

simple-effects analysis of the Biology department (Figure 6) showed significant

gender differences for both tenured and untenured faculty. However, the Biology

chair might be interested in determining whether or not the difference between

male and female salaries for tenured faculty (those who have been faculty

members longer than their untenured cohorts) is as dramatic as the gender

difference in untenured faculty. Such an inquiry might provide more insight

into the changing trends in the salary inequity, assuming that one accepts

the argument that a salary bias in tenured faculty represents biases that

initially occurred (with starting salaries) some time ago relative to the salary

inequity observed in the more recently hired untenured faculty. In order to

explore this possibility, we need to run a two-factorANOVA (Gender * Tenure

Status) on only the Biology faculty members' salaries. If this analysis reveals

a significant Gender * Tenure interaction effect, then evidence exists that

supports the idea that the gender bias for tenured faculty is not the same as

the bias in untenured faculty. Figure 11 a shows the results of this analysis,

with a significant Tenure * Gender interaction effect (F = 7.97, p = .008)

showing a greater gender-difference in salaries among tenured faculty relative

to untenured faculty in this department. Even with this result, our earlier

simple-effects analysis confirmed that there remains a statistically significant

difference between male and female salaries in both the tenured and untenured

faculty, and even if there is "less of a difference" among untenured faculty

members, that's not particularly satisfying in terms of gender equity.
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Figure 11a

Two-Factor ANOVA on Faculty Salary by Tenure Status and Gender

in the Biology Department Only

Descriptive Statistics (Biology Dept. Data Only)

Dependent Variable: salary

sex tenure

Female Untenured

Tenured

Total

Male Untenured

Tenured

Total

Total Untenured

Tenured

Total

Mean

30405.30

47142.60

38773.95

38834.20

61705.30

50269.75

34619.75

54423.95

44521.85

Std. Deviation

2924.151

1392.477

8870.688

4568.788

3979.357

12451.629

5712.646

8014.230

12155.452

N

10

10

20

10

10

20

20

20

40

Tests of Between-Subjects Effects

Dependent Variable: salary

Source

Corrected Model

Intercept

sex

tenure

sex* tenure

Error

Total

Corrected Total

Type III Sum
of Squares

5337656309a

7.929E+10

1321534176

3922063376

94058756.1

424788814

8.505E+10

5762445123

df

3

1

1

1

1

36

40

39

Mean Square

1779218770

7.929E+10

1321534176

3922063376

94058756.10

11799689.28

F

150.785

6719.482

111.997

332.387

7.971

Slg.

.000

.000

.000

.000

.008

a. R Squared = .926 (Adjusted R Squared = .920)

(Biology Dept. Data Only)

m Estimated Marginal Means of salary

sex

60000 J

I
CO

50000 -

40000 -

CO

15 30000

Female

— Male

Untenured Tenured
tenure
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One might

speculate that the

gender bias in this

department is

possibly due to

age differences

among our faculty,

not purely gender,

and that it so

happens that the

higher-paid faculty

happen to be

older and more

experienced, thus

deserving of

higher salaries.

To test this

hypothesis, we

will run the same

2 (Gender) x 2

(Tenure Status)

IM-ANOVA, but

we also include

faculty AGE into

the model as

covariate. The

results of this IM-

ANOVA with

covariate are

shown in Figure

11b. Note that

this model

compares

adjusted salaries,

where Age is

used as the

covariate

adjustment factor.

Thus it is testing

the more sterile

effects of tenure

status and gender

on salary, after

the effects of Age

Figure 11b

Two-Factor ANOVA on Faculty Salary by Tenure

Status and Gender, using Age as a Covariate

Tests of Between-Subjects Effects

Dependent Variable: SALARY

Source

Corrected Model

Intercept

AGE

SEX

TENURE

SEX* TENURE

Error

Total

Corrected Total

Type III Sum
of Squares

5.440E+098

222380733

102737002

12055026.2

361795367

285308.417

322051813

8.505E+10

5.762E+09

df

4

1

1

1

1

1

35

40

39

Mean Square

1360098328

222380733.0

102737001.7

12055026.21

361795366.5

285308.417

9201480.358

F

147.813

24.168

11.165

1.310

39.319

.031

Sig.

.000

.000

.002

.260

.000

.861

a. R Squared = .944 (Adjusted R Squared = .938)

1.SEX

Dependent Variable: SALARY

SEX

Female

Male

Mean

42980.03a

46063.67a

Std. Error

1429.877

1429.877

95% Confidence Interval

Lower Bound

40077.221

43160.871

Upper Bound

45882.829

48966.479

a. Covariates appearing in the model are evaluated at the

following values: AGE = 39.10.

2. TENURE

Dependent Variable: SALARY

TENURE

Untenured

Tenured

Mean

37814.53s

51229.17a

Std. Error

1172.268

1172.268

95% Confidence Interval

Lower Bound

35434.697

48849.340

Upper Bound

40194.360

53609.003

a. Covariates appearing in the model are evaluated at the
following values: AGE = 39.10.

3. SEX * TENURE

Dependent Variable: SALARY

SEX TENURE

Female Untenured

Tenured

Male Untenured

Tenured

Mean

36151.308

49808.758

39477.75a

52649.608

Std. Error

1969.067

1247.716

978.387

2874.868

95% Confidence Interval

Lower Bound

32153.886

47275.748

37491.521

46813.304

Upper Bound

40148.724

52341.744

41463.984

58485.889

a. Covariates appearing in the model are evaluated at the following values:

AGE = 39.10.

Age-Adjusted Mean Salary by Tenure and Gender

£ 60000

"(0 50000

40000

% 30000
w Untenured

TENURE

Tenured
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on salary have been removed. Note from the ANOVA summary table, that

Age is significantly related to salary, and now that Age is part of ourANOVA

model, we no longer have a significant Gender * Tenure interaction term, or a

main effect for Gender. The only significant effect remaining is a main effect

for Tenure status, showing significantly higher age-adjusted salaries for tenured

versus untenured faculty (F= 39.3, p= .000). This is a very different conclusion

than we arrived at in our original discussion of these salary data and illustrates

the importance of including relevant covariates in ANOVA models, particularly

when dealing with issues as important as salary equity and discrimination.

The next important task would be to ponder why male faculty in this department

are older than women, and the bearing this has on gender equity. Perhaps

men got an earlier start in this discipline than women, indicating that the

gender bias is mediated by age. Or, perhaps a gender bias existed many

years ago, when the older faculty members were hired, but that more recent

hiring policies have made strides to correct for the bias. We cannot devote

too much time to understanding these results (and they are from fictitious

data anyway), but the point remains that one must consider relevant covariates

in any analytic approach, and ANOVA can incorporate continuous covariates
in this manner.

Note that this example illustrates a situation in which a covariate (age)

was responsible for effects that could have falsely been attributed to other

factors (gender) in the model. Sometimes covariates have no effects

whatsoever on the significance of other factors, and it is possible that including

a covariate in a model could increase the likelihood of significance on other

factors already included in the model. The decision of whether or not to

include covariates in an ANOVA model should, therefore, be based on a

logical, defendable argument. It is not "good science" to create expansive

statistical models, with multiple factors and covariates, just because it is

possible to do so. One must carefully and critically evaluate each factor and

covariate that is to be included in a statistical model, and only accept those

that are deemed important and statistically relevant.

Presenting Results of ANOVA Models

By now, the reader should be well informed enough to understand when

the ANOVA statistic might be used to shed light on Institutional Research

and Assessment topics of interest. Hopefully one also has a good idea of
the different types ofANOVA models that can help the researcher understand

their data better, and how incredibly versatile and powerful this statistic is.

By now the reader should have an appreciation for the fact that complex, multi-

factorial ANOVA models have similarly complex results that are perhaps not so

intuitively easy to understand without some guidance and practice. Unfortunately,

it is often the case that we as professionals have far more statistical training

and practice than our colleagues to whom we must present our results. As

such, in addition to having a solid foundation in statistical theory and practice,
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it is possibly equally as important that we refine our presentation skills so that

we can make complex (and interesting!) results seem simpler to understand.

Thank heavens for graphs and presentation software!

There are many resources available that attempt to teach us how to

understand, evaluate, and present statistical results appropriately (see

Abelson, 1995, van Belle, 2002, and Farebrother, 2002 to name a few). No

better tool to ease presentation exists then a solid understanding of the

statistical procedure that you ran, and the results obtained. With regard to

presenting the results from complex statistical models, like a multi-factorial

ANOVA, we have generally found that pictures speak volumes over tables of

numbers, and this is especially true for non-quantitative audiences. The

reader need only to flip back a few pages and compare their own "knowledge-

gained" from looking at the Descriptive Statistics tables that are produced as

part of the SPSS output, to how much better they understand the effects

when they look at the line charts that accompany many of the figures in this

chapter.

It's not that clearly defined tables are not valuable-^they are—especially

in written reports that an audience may refer to sometime after a visual/audio

presentation. But while tables of numbers may speak to some, pictures

seem to somehow shout to everyone. So whenever possible, use a variety of

different bar charts or line graphs to illustrate where significant differences

exist. For significant interaction effects, I highly recommend use of line

charts over bar graphs, as it is easy to see when lines are parallel (indicating

no interaction effect, see Figure 11 b) versus when they "spread apart" from

one level of a factor to the next (indicating an interaction effect, See Figure

11 a), or even better, when they cross over from one level of a factor to the

next (the strongest interaction effect possible).

Gerald van Belle, in his highly acclaimed 2002 textbook titled Statistical

Rules of Thumb (an intelligent, yet hilarious read for anyone in our field)

devoted several pages to the notion of which types of charts best illustrate

statistical effects. Dr. van Belle tells us to "always graph the data," but to

"never use a pie chart." He directs further that "bargraphs waste ink [and]

don't illuminate complex relationships," and that "stacked bargraphs are worse

than bargraphs." Finally, in his own humorous style, he writes that "three-

dimensional bargraphs constitute misdirected artistry!" The point in all of

this is that one should be careful not to get too wrapped up in the fancy

charting options that SPSS, PowerPoint or other presentation software offers,

but to focus more on the types of charts that show significant differences

that exist in your data, and/or interaction effects that have been revealed. At

the same time, be weary of the default scaling that these software products

use when graphing data, as the scales are almost never what you want them

to be.
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Summary Remarks

This chapter began with a discussion of why the Analysis of Variance

statistic is a valuable analytic tool, starting off with a simple extension to the

Independent Measures t-statistic with more than two comparison groups,

and working through increasingly complex multifactorial experimental designs.

We presented several examples relevant to Institutional Research and

Assessment offices, where ANOVA could be applied in studies utilizing

Independent-Measures factors, Repeated-Measures factors, and Mixed-Model

designs. We discussed a general analytic strategy for understanding higher-

order interaction effects, and how to dig deeper into these effects with follow-

up post-hoc and/or apriori contrast analyses. We then shifted our discussion

ofANOVAto an illustration of how the statistic can also incorporate covariates

into the model in order to better understand the effects of model factors on

outcomes, after removing the effects of a covariate.

Before ending our discussion of ANOVA, it is important to again

emphasize that the ANOVA statistic is a very versatile and powerful tool for

understanding complex effects in multifactorial experimental designs—so

much so that I feel it necessary to caution the reader against the temptation

of creating what I call the "kitchen sink" study, only to then have to somehow

interpret complex higher-order interactions that are very difficult to grasp. A

"kitchen sink" study is one that includes too many factors, too many covariates,

or both. While our statistical software can and will crank out results for such

broadly defined studies, the result is often a significant three, four, five or

higher-order interaction effect that is, for all practical sense, impossible to

understand. Even if the eager analyst digs deep in his or her understanding

of such effects, ultimately the researcher is going to have to explain these

complex interaction effects to higher education administrators and decision-

makers, who often are not as well-equipped, interested or motivated in

understanding complex statistical effects resulting from "kitchen sink" studies.

Therefore, for statistical, theoretical, and practical reasons, the use of

multifactorial ANOVA designs to address Institutional Research and/or

Assessment questions should be conducted in a thoughtful manner. Always

strive for parsimonious models that can provide concrete answers to simple

questions, rather than overly complex models that ultimately confuse and

convolute our understanding of what is most likely a much simpler question.
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Endnotes

1 One can use ANOVA if only two groups exist, though the t-test is

generally preferred because it has fewer assumptions, and is easier to explain

to a statistically naive audience. In fact, the calculation of an F-statistic

comparing two groups would equal the square of a t-score comparing the

same two groups, each with exactly the same p-value.

21 eliminated some output from this Figure because of space limitations.

These data passed all assumptions of ANOVA.
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Chapter 3

Regression Analysis for Institutional Research

Robert K. Toutkoushian

This chapter will review the statistical technique known as multiple

regression analysis, and how it can be used to examine problems commonly

faced in institutional research. The previous chapters in this monograph have

explored statistical techniques for decomposing the means between different

groups of observations. In contrast, the basic objective of regression analysis

is to estimate the linear relationship between a set of K independent variables

(denoted X1 to XK) and a specific dependent variable (denoted Y). In regression

analysis, the dependent variable is assumed to be continuous over the range

of values under consideration. When the dependent variable is dichotomous

(0,1), a related technique known as logistic regression analysis can be used

to accomplish the same goal. This topic will be covered in chapter five.

One of the main strengths of regression analysis as a statistical technique

is its flexibility. Regression analysis can be used when the independent

variables are continuous, discrete, or dichotomous, and thus can handle

most of the different types of variables used in institutional research. By

appropriately transforming the dependent and/or independent variables in the

model, regression analysis can also estimate a number of non-linear as well

as linear relationships between variables of interest.

Regression analysis has three main uses that are important for

institutional research applications. The first is that the model can be used to

test hypotheses regarding the relationships between specific independent

variables and a given dependent variable. This is important because most of

the situations encountered in institutional research are those where the analyst

does not observe the data-generating process. Through hypothesis tests, it

is possible to draw inferences as to whether an independent variable of interest

(such as a student's grade point average) has an influence on a dependent

variable (such as a student's income after graduation) for the entire population.

Regression analysis also permits the analyst to estimate coefficients

showing how changes in an independent variable affect the dependent variable.

These coefficients can have important policy implications and are important

beyond the fact that the independent variable has a significant effect on the

dependent variable. For example, the Director of Enrollment Management at

an institution may want to know not only if an applicant's SAT score affects

his or her future grade point average, but how large the effect is. Finally,

regression analysis can be used to derive predictions for the dependent variable

under consideration. Once the regression equation has been specified, values

of the independent variables can be substituted into the equation and

predictions obtained for Y.
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There are many situations encountered in institutional research where

the use of regression analysis can be extremely valuable. Regression models

can be used in a variety of ways to assist a campus in fulfilling its enrollment

management functions. For example, a regression model could be used to

identify whether factors such as financial aid offers and advertising

expenditures affect the number of applications received in a given year. The

same model could be used to quantify the change in applications or

enrollments that might occur if financial aid offers are increased by specific

amounts. This technique could be used to look at how characteristics of

applicants, such as family income, student ability, race, gender, and so on,

affect the future academic performance of students at an institution. This

information could prove to be extremely valuable in making admissions

decisions and identifying students who are likely to need remediation

assistance.

This chapter deals exclusively on regression analysis and its application

to institutional research problems. It is assumed that the reader has some

working knowledge of how to conduct a hypothesis test, and understands

the notion of correlation and simple (1 variable) regression analysis. The

emphasis will be on how to use and adapt the technique to situations that

might be encountered in institutional research, rather than derive the

mathematical properties of different procedures. The chapter concludes with

two examples of how these techniques can be useful for the practice of

institutional research.

Basic Regression Model

The basic form of a regression equation can be written as follows:

o ^^ ran
Y — B + > B X +£ *• •*

7=1

where Yf=value of the dependent variable for the i-th observation, Xtj=value

of thej-th independent variable for the i-th observation, and e.= random error

term for the i-th observation. The parameters 30,...,8K are population

coefficients to be estimated through the use of ordinary least squares. Each

coefficient is referred to as a "partial effect," which means the impact of a

particular variable (say X,) on Yholding constant the other variables in the

model. Ordinary least squares specifies that the estimates of these population

parameters should be determined by the set that minimizes the sum of

squared residuals (errors). Once the coefficients have been estimated

(denoted b0\o bK), the equation can be written in a linear form. For example,

if Y- per-student cost at the i-th college, X1 = student to faculty ratio at the

i-th college and X2=total (headcount) enrollment at the college, the resulting

regression equation might be written as:
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Y = 4000 - 200 X1 + 50 X2

A

where Y= predicted value of /based on the regression equation. In this

hypothetical example, b0 = 4000, b1 = -200, and b2 = 50.

Assumptions in Regression Analysis

There are several key assumptions that must be made regarding the

multiple regression model:

1. The dependent variable is continuous.

2. The independent variables are uncorrelated with each other.

3. The independent variables are uncorrelated with the error term.

4. The error term has a mean of zero, a constant variance, and the

errors are uncorrelated with each other.

It is important to note that regression analysis is fairly robust with regard

to small violations of these assumptions. In many empirical studies, the

dependent variable may have a large number of possible values and yet not

be continuous. Such is the case for income, and the number of credit hours

attempted/completed by students. Even concepts which in theory are

continuous, such as time, may be measured only in discrete units. Regression

analysis can still be used in these situations provided that a continuous

distribution is a reasonable proxy for the true distribution.

Turning to the second assumption, in most empirical studies there will

be some correlation between the various independent variables in the

regression model. Correlation between the independent variables will affect

the coefficient estimates because these coefficients are interpreted as partial

effects. This can present problems for the institutional researcher who is

interested in the effect of a particular factor (such as ability to pay) on student

performance in college. If the researcher were to include multiple measures

of a student's ability to pay, such as family income and wealth, into the

regression equation explaining future academic performance, then the resulting

partial effects of family income and wealth on performance would be affected

by the likely correlation between them.

On the other hand, there are situations where the analyst will be very

interested in capturing this correlation and removing its effects from a particular

policy variable. Returning to the previous example, if the analyst wanted to

know how student ability affects performance, it would be very important to

remove the effects of other factors that would also affect performance and

may be correlated with ability, such as family income, parental education,

etc. In this instance, it is less problematic that multiple measures of

socioeconomic status are used in the regression model and possibly correlate

with each other. The main point to take away from this discussion is that
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correlation between the independent variables is not always a problem in

practice.

A special problem known as multicollinearity can arise, and has serious

complications for regression analysis. If two independent variables are collinear,

then the ordinary least squares technique will not be able to properly identify

the partial effects and standard errors of the two variables. The result is that

the coefficients will be biased and the standard errors will be greatly inflated,

making it appear as though neither variable has an influence on the dependent

variable. While analysts often express concern about the possibility of

multicollinearity, it is important to note that this only arises when the two

variables have an extremely high correlation with each other. If the two

variables are correlated, but not to the point that they are collinear, then

ordinary least squares will still be able to calculate correct coefficient estimates

and standard errors.

Turning to the third assumption, it is possible that one or more

independent variables in the regression model could be correlated with the

error term since the error term captures the net effect of all omitted factors

from the model. In most applications, the institutional researcher will not

have data on all of the relevant characteristics that theory would suggest

should influence the dependent variable. In these instances, the partial effect

observed in the regression equation may be biased because it does not

remove the effects of correlation with the omitted variables. Of all the problems

facing analysts when using multiple regression analysis, this is perhaps the

most difficult to overcome because the true (population) model is rarely

observed and virtually all regression models are subject to criticism for omitting

relevant factors.

This problem can also occur when one of the independent variables is

itself an endogenous variable. There are potentially many instances in

education research where this may occur. For example, a researcher may

wish to estimate the influence of a student taking an Advanced Placement

(AP) course on future academic performance. It would not be surprising to

find that if this variable were regressed on student performance, the analyst

would find that students who have taken AP courses perform better than

other students in college. However, students are not randomly assigned to

AP courses but rather have to choose to enroll in such courses. This decision

is likely to be influenced by factors such as the student's academic ability,

parental education, and other factors. In other words, the variable is itself

endogenous, and failure to take this into account when conducting the analysis

could give rise to misleading results.

Finally, the last assumption needed to derive a multiple regression

equation is that the mean of the error term is zero and that the errors have a

constant variance and are unrelated to each other. By construction, the error

term will have a mean of zero provided that an intercept term is added to the

equation. The assumption that the variance of the error term is constant can
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be violated in instances where the variance is correlated with one or more

variables in the model. When this occurs, it is referred to as heteroscedasticity.

This problem most often occurs in cross-sectional data (i.e., data collected

from observations at one period of time), and can be corrected through several

procedures including weighted least squares. The assumption of uncorrelated

errors can be violated when using time series data (i.e., data collected on the

same observation at multiple periods of time) and is referred to as

autocorrelation. Both of these problems - heteroscedasticity and

autocorrelation - can affect the estimated standard errors for the coefficients

in the model and the hypothesis tests conducted on them. As with

heteroscedasticity, there are statistical procedures that can be used to detect

and correct for autocorrelation.

Before proceeding, the reader should also take note of what does not

have to be assumed when performing regression analysis. First, it is not

necessary to assume that any of the variables in the model have a particular

distribution, such as the normal distribution. Regression analysis can handle

situations where the independent variables are continuous, discrete, and

even dichotomous. The only requirement is that the dependent variable must

be reasonably approximated by a continuous distribution. A second point to

note is that it is not necessary to assume that the error term is normally

distributed for the purpose of obtaining estimated coefficients. This assumption

is needed, however, if the analyst attempts to perform a hypothesis test on

any of the coefficients in the model and the sample size is small. As the

sample size increases, the set of possible sample coefficients will approach

a normal distribution because of the Central Limit Theorem, and thus the

assumption of a normally distributed error term is not required for performing

hypothesis tests in large samples.

Uses of Regression Analysis

There are a number of ways in which the estimated multiple regression

equation can be used to help understand problems faced in institutional

research. The first of these is to test hypotheses concerning the effects of

particular independent variables on the dependent variable. The second is to

assess the overall quality of the regression model and how well it explains

the variation in the dependent variable. The third is to use the equation to

derive predictions for the dependent variable using assumptions about the

values of the independent variables.

Hypothesis Testing

Most readers should be familiar with the basic notion of how to conduct

a hypothesis test. The three main steps used in virtually all hypothesis tests

are the following:

1. Specify the null (Ho) and alternative (HA) hypotheses.
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2. Identify the appropriate test statistic and find the critical values for

this statistic when the null hypothesis is true.

3. Calculate the test statistic and compare it to the critical values.

The main difference across statistical procedures is in the appropriate test

statistic and the random variable being examined. In general, the z- or t-test

statistic for any random variable takes the following form:

Value of random variable - mean (rv)

Calculated z-or t-statistic = [3.2]

Standard error (rv)

Different situations call for the use of different random variables, and each

random variable has its own mean and standard error when the null hypothesis

is correct.

In the case of regression analysis, the random variable typically under

examination is the estimated coefficient for one of the independent variables.

When the error term is normally distributed, and/or the sample size is large

(30 or more degrees of freedom is a commonly-used rule of thumb), the

estimated coefficient b. will also be normally distributed with a mean of /3yand

a standard error that is a function of the sample size, variance of X, and

correlation with other Xs in the model. Hypothesis tests in multiple regression

are usually described as "significance tests" because the null hypothesis is

that the j-th variable has no effect on the dependent variable (Ho: B}=0; HA: B}

* 0). Accordingly, the t-test for determining whether the j-th variable has a

significant effect on the dependent variable is written as:

Calculated t-ratio = fc>./st.err(b.) [3.3]

where b.=estimate of 0y, and st.err(by) = standard error of b.. The calculated

t-ratio has N-K-1 degrees of freedom (N=sample size, K=number of

independent variables in the model) and follows the Student t-distribution.

When the calculated t-ratio exceeds the critical t-ratio, the null hypothesis

can be rejected and the analyst can conclude that the j-th variable has an

effect on the dependent variable. In large samples, the normal distribution

can be used as an approximation for the t-distribution.

Technically, the coefficients in a regression model can be estimated

provided that the sample size is greater than the number of parameters to be

estimated. However, a word of caution is advised when estimating models

with relatively few degrees of freedom. When there are few degrees of freedom

in the model, the resulting standard errors of the coefficients will be large,

making it more difficult to reject the null hypothesis and conclude that an

independent variable has an effect on the dependent variable. Whenever

possible, analysts are encouraged to use a data set that is large enough to
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provide more reliable estimates of the coefficients in the model. This is not

always possible in institutional research applications, especially when dealing

with time-series data. In these instances, analysts should use caution when

drawing inferences based on their results.

Goodness-of-Fit Measures

The term "goodness-of-fit" describes how well the multiple regression

model explains variations in the dependent variable. There are two primary

measures of goodness-of-fit that are used by analysts. The first is the F-test

which is used to determine if the variables in the regression model collectively

explain a significant proportion of variation in the dependent variable. In

practice, this is not a very powerful test because most regression models are

capable of passing this test, even when the explanatory power of the model

is relatively low. Therefore, it is not often used as a strict indicator as to

whether or not the overall regression model is "good."

The most commonly used measure of goodness-of-fit is the coefficient

of determination, or R2. The coefficient of determination measures the

proportion of deviation in the dependent variable that is explained by deviations

in the independent variables in the model. This is computed by dividing the

sum of squares explained by the regression equation by the total sum of

squared deviations. The value of R2 must fall between 0 and 1, with R2 = 0

meaning that the equation explains no portion of the deviations in the

dependent variable and R2 = 1 indicates that all of the deviations in the

dependent variable are accounted for by the regression model. As FP increases,

the regression model is said to explain a greater proportion of variations in

the dependent variable.

Caution should be used when examining the coefficient of determination

to evaluate the quality of the overall regression model. First, the value of R2

will almost always increase as new variables are added to the model because

these new variables may capture some additional variation even if the variable

itself does not have a significant impact on the dependent variable. While the

adjusted /^statistic provides information about whether the additional variables

lead to an improvement in the model's fit, many analysts prefer the standard

fi2because the adjusted R2\s not a precise measure of the percentage of

deviations in /explained by the independent variables. A second concern for

analysts is that there is no single cutoff point that can be used to determine

if the value of R2 is good. The variation in some dependent variables is much

more difficult than others to explain through a regression model. This means

that R2 = 0.20 may be relatively low if the analyst was attempting to explain

variations in faculty salaries, but might be relatively high if she were examining

the teaching evaluation scores of faculty. The best advice for analysts to use

when considering the f?2 value in their study is to compare this value to those

obtained in studies of similar variables.

95



Deriving Predictions

The final use of regression analysis is that institutional researchers can

use it to obtain predictions of the dependent variable. To derive predictions,

the analyst has to insert values for each of the independent variables into the

model and then calculate the resulting predicted value of the dependent variable

(Y). For example, suppose that an institutional researcher working in an

admissions office estimated the following equation relating a student's SAT

score (Xy), number of AP classes completed (X2), and freshmen year grade

point average (Y): Y = 1.20 + 0.001 Xr+0.50X2. The analyst could then

predict that an applicant with an SAT score of 1,200 and three completed AP

courses would have a predicted freshmen year grade point average of Y =

1.20 + 0.001*(1200) + 0.50*(3) = 3.90. This is referred to as a point

estimate. The regression equation can also be used to derive interval estimates

for predicted value of the dependent variable that take into account the variability

inherent in this prediction. This is particularly useful for conveying to the

reader the uncertainty or error that typically accompanies the prediction.

Statistical programs such as SPSS will easily generate mean prediction

intervals upon request.

Common Variable Transformations

There are many instances in institutional research where one or more

of the variables of interest to a researcher cannot be used in their current

form. While multiple regression analysis is a very flexible technique, it does

require that the variables used in the model be quantitative or non-categorical.

Institutional researchers will encounter many problems where the data are

alphanumeric or categorical (such as a student's state of residence, gender,

or race/ethnicity), yet would like to assess their impact on a particular

dependent variable. Likewise, the data may represent responses from survey

questions where respondents are asked to rate specific items. While the

ratings may be coded as numerical, the underlying variables are in fact

categorical (1 =strongly agree, 2=agree, etc.). There are also instances where

the analyst has good reason to suspect that the nature of the relationship

between a particular dependent and independent variable is in fact non-linear,

and using the variables in their current form in the regression model would

not capture these non-linearities.

In all of these situations, it is possible through variable transformations

to use the variables in hand and yet use multiple regression analysis for the

study. In the case of categorical data, dichotomous (0,1) variables can be

created that would still capture the effects of these variables on the dependent

variable. Through appropriate transformations of either the dependent or

independent variables, multiple regression analysis can estimate the linear

relationship between non-linear variables. The flexibility of multiple regression

analysis to handle all of these situations is one of the main strengths of the

technique.
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Dichotomous Variables

A dichotomous variable (commonly referred to as a "dummy variable")

is a numerical variable that has only two possible values: 0 and 1. Dummy

variables can be created from most any type of variable by using an assignment

rule. The assignment rule describes how the set of values of a variable

should be recoded, i.e., which values are assigned the value zero and which

values are assigned the value one. In the case of gender, for example, a

dummy variable Fmay be created by assigning the value "female" to 1 and

the value "male" to 0. This variable could then be included in the regression

equation, and the coefficient for the variable would represent the predicted

difference in the dependent variable between the two groups. For the purpose

of regression analysis, it does not matter whether female = 1 or female = 0

since this will only change the sign and not the significance level or the

magnitude of the estimated coefficient.

More than one dummy variable can be created from the categorical

variable at the disposal of the analyst. For example, if the analyst had data

on the state of residency for students, he or she could create a separate

dummy variable for each state (e.g., S1 = 1 if student is from California, 0

otherwise; S2= 1 if student is from Minnesota, 0 otherwise). The assignment

rule can also rely on groups of observations, such as R1 = 1 if student is from

a state on the East Coast, 0 otherwise. When creating dummy variables, the

number of dummy variables used in a multiple regression model to represent

a particular categorical variable must omit at least one category. In the

previous example, if the analyst created fifty dummy variables based on the

student's state of residence, at least one of these variables would have to be

omitted from the regression model. Failure to do so would lead to perfect

collinearity between the set of dummy variables and the intercept in the regression

equation. It does not matter which variable is omitted from the model, except

to note that the coefficients on each variable represent the difference between

the category in question and the omitted category on the dependent variable.

Non-Linear Variable Transformations

Although regression analysis is thought of as a linear estimation

technique, there are some simple ways using variable transformations to

estimate non-linear relationships between variables. This technique greatly

increases the flexibility of regression analysis for dealing with problems in

institutional research; however, it does increase the difficulty of interpreting

results from the regression model. This chapter will describe only two of the

most commonly-used transformations useful for applications in institutional

research.

Logarithmic Transformations

There are many instances where transforming one or more variables

using the natural logarithmic function can be useful for modeling problems
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Table 1

Example of the Natural

Log Transformation of a Variable

faced in institutional

research. The natural log

transformation effectively

reduces the scale of the

variable and is particularly

useful in instances where

the distribution of the

variable is highly skewed to

one side or the other. Table

1 illustrates how the natural

log transformation changes

the values of a given

variable:

The values in Table 1

show that there is much

less variability between the

extreme values for the

variable created with the natural log transformation than is true for the original

variable.

The natural log transformation can be applied to either the dependent

variable, independent variable, or both. When it is only applied to the

dependent variable, the resulting multiple regression equation is referred to

as a semilogarithmic equation:

Original Variable (Y)

1

2

3

10

50

100

1,000

10,000

100,000

Natural Log Transformation (InY)

0

0.69

1.10

2.30

3.91

4.61

6.91

9.21

11.51

7=1

[3.4]

Interpreting this model literally, the estimated coefficients now represent

the effect of a one-unit change in each X on the natural log of Y. The

coefficients, however, have been shown to be approximations of the percentage

changes in Ydue to one-unit changes in each X. Therefore, in instances

where the analyst has reason to believe that changing the independent

variables would have a constant effect on the percentage and not the level of

Y, applying the natural log transformation to the dependent variable is very

appealing. The transformation implies that /increases at an increasing rate

as X increases, or vice-versa if the relationship between the variables is

negative. This transformation is often used in studies of faculty salaries

since many institutions of higher education award salary increases on a

percentage and not a fixed dollar basis.

Suppose instead that the natural log transformation is made to one of

the independent variables in the model, such as:
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7=1

[3.5]

The estimated coefficient for BK+1 represents the change in Vbecuase

of a one percent change in XK+1. This transformation implies that Y increases

at a decreasing rate as X increases, or vice-versa if the relationship between

the variables is negative. This situation may be encountered in institutional

research when studying dependent variables that are bounded, such as a

student's grade point average or the retention/graduation rate for an institution.

Changes in independent variables are likely to have smaller effects on the

dependent variable as the upper boundary is approached, and thus the natural

log transformation may provide a better fit to the model than would a linear

function. Figure 1 shows how these two examples would be represented

graphically:

Figure 1

Effect of Natural Logarithmic Transformation on

the Relationship between X and Y

\nY =bo + b,X

X

Finally, there are times when the analyst may wish to apply the natural

log transformation to variables on both sides of the equation. In the resulting

equation, the coefficient on X represents the percentage change in Y due to

a one percent change in X. This is referred to by economists as an elasticity.

Quadratic

With the natural log transformations described above, the sign of the

effect of Xon Y, is the same regardless of the value of X. There are times

when this is not an accurate description of the relationship between two

variables. For example, a student's likelihood of applying to a given college

may at first increase as her SAT score increases, but eventually would
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decrease as her ability level exceeds the profile of students at the institution.

Likewise, studies that have tried to explain per-student costs as a function of

enrollments usually posit that per-student costs initially fall as enrollments

rise due to economies of scale, but eventually start to increase as the

institution becomes too large. In each example, not only does the effect of X

on /depend on the level of X, but the direction of the effect of Xon /will also

change.

To capture these effects in a multiple regression analysis, the analyst

creates a new variable that is simply the square of the variable in question

and adds this variable to the regression model:

Yi = A +SfijXv +PK+iXK+l +0K+2XKH2 +£i [3.6]
7=1

The effect of XK+1 on Y can be found by differentiating the resulting

equation with regard to XK+1. Likewise, the analyst can determine if there is

evidence of a quadratic relationship by applying the standard significance

test to the estimated coefficient for the quadratic variable {BK+2). If the

estimated coefficient is not statistically different from zero, then there is no

evidence of a quadratic relationship between the variable in question and the

dependent variable. When bK+2<0, then the quadratic curve increases and

then decreases as X increases ("hill-shaped"). Likewise, the curve will be Ll-

shaped when bK+2 > 0. These two possibilities are shown in Figure 2:

Figure 2

Effect of Quadratic Transformation on the

Relationship between X and Y

F falls then rises (b2>0)

y rises then falls (b2<0)
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Table 2

SPSS Output: Regression Analysis Relating Second Grade

Enrollments to High School Graduates

Model Summary

Model

1

R

.959a

R Square

.919

Adjusted

R Square

.911

a. Predictors: (Constant), grade2

Model

1 (Constant)

grade2

Std. Error of

the Estimate

201.779

Coefficients?

Unstandardized

Coefficients

B

4119.178

.603

a- Dependent Variable: hsgrad

Model

1 Regression

Residual

Total

Sum of

Squares

4649217

407148.8

5056366

Std. Error

759.383

.056

Standardized

Coefficients

Beta

.959

ANOVAb

df

1

10

11

Mean Square

4649217.152

40714.885

t

5.424

10.686

F

114.190

Sjg.

.000

.000

Sig.

.000a

a. Dependent Variable: hsgrad

b. Predictors: (Constant), grade2

Application 1: High School Graduate Projections

The first application is for an institutional researcher who is asked by

her director to derive projections of the numbers of high school graduates for

their state. The analyst has data on the number of high school graduates

each year (Hsgrad) for a 12-year period 1990-2001, and the second grade

enrollments each year (Grade2) for a 22-year period 1980-2001. The data for

this example are contained in the file HSGRAD.SAV. The model used by the

analyst is that the number of high school graduates in any year will be a

linear function of the number of second grade students ten years earlier,

since second graders in a given year (such as 1985) will normally be eligible

for high school graduation ten years later (such as 1995): Hsgradt = Bo +

B1Grade2t_10 + et.

The analyst would begin by estimating the equation shown above using

data on second grade enrollments from 1980 to 1991 and high school

graduates from 1990 to 2001. Note that by construction, the data set consists

of only twelve observations and ten degrees of freedom. The SPSS output in

Table 2 shows the results from the regression analysis.

The coefficient of determination is shown in the column with the heading
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"R square." Despite the relatively small sample, the value of R2 = .919

indicates that almost 92% of the annual variations in high school graduates

for the state are explained by variations in the numbers of second grade

students ten years earlier. In the second box, the total sum of squared

deviations is broken down into the portions that are explained and not explained

by the regression model. The fifth column in this table contains the F-statistic

described earlier for assessing whether the regression equation as a whole

has a significant impact on the dependent variable. Note that while the p-

value for this test statistic is approximately zero (see the last column with

the heading "Sig"), this is a fairly trivial test in practice and does not give any

guidance as to whether or not the regression model is good.

Of more importance here are the results shown in the last output box.

The column with the heading "B" under "Unstandardized Coefficients" contains

the estimated coefficients for each of the variables in the model. Likewise,

the estimated standard errors for each coefficient are in the column headed

"Std. Error." The equation would be written as follows based on this output:

Hsgradt = 4119.18+ .603*Grade2t_
10

The calculated t-ratios for each of these variables are shown in the

column headed "t." In this example, the calculated t-ratio = 10.69 and is

highly significant, and thus the null hypotheses that second grade enrollments

has no effect on high school graduates ten years into the future can easily be

rejected. The results are encouraging even though the sample size on which

the estimates were based was relatively small. These calculated t-ratios are

obtained by dividing the estimated coefficients in column 2 by the standard

errors in column 3. It is also worth noting that when the regression model

contains only one independent variable, the F-statistic for the overall regression

model is exactly equal to the square of the t-ratio for the independent variable.

In this application, recall that the analyst is interested not only in

estimating the relationship between second grade enrollments and future

high school graduates, but also using this model to predict the numbers of

high school graduates in the future. This particular model is well suited to

the task because the analyst has data on second grade enrollments from

1992-2001 that can be used to predict high school graduates for 2002-2011.

Point estimates can be obtained by substituting second grade enrollments

for each year into the estimated equation and solving for high school graduates.

However, these predictions are likely to be inaccurate due to sampling variability,

which is magnified here because of having only ten degrees of freedom. The

analyst can also compute prediction intervals for each ofthese estimates. Doing

so in this example would lead to the following predictions shown in Table 3.

These data show, for example, that in 2002 the model would predict

that there will be 12,459 high school graduates in the state. Furthermore,

the analyst is 95% certain that the number of high school graduates in 2002
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Table 3 will be between

Point and Interval Predictions of the Numbers of 12,319 and

High School Graduates based on Regression Model 12,599. This

information would

be useful to the

institution in long-

range planning for

staffing, facilities,

and recruiting.

Application 2:

Faculty Salary

Studies

The second

institutional

research

application

addresses how to

measure the pay

disparity

between male and female faculty members at a university. The data for this

example are contained in the file FACULTY.SAV and are stored as an SPSS

system file. The following information is available on each of 432 faculty

members:

Year

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Predicted Numbers of High School Graduates

Lower Bound

Estimate

12,319

12,778

13,422

13,736

13,753

13,709

14,089

14,004

14,203

14,339

Point Estimate

12,459

12,986

13,773

14,163

14,185

14,130

14,605

14,499

14,748

14,919

Upper Bound

Estimate

12,599

13,193

14,124

14,590

14,616

14,551

15,121

14,993

15,293

15,498

Variable

Rank

Gender

Nine12

Cites

Annsal

Yrsexp

Lsalary

Yrsexp2

Description

1=full professor, 2=associate professor,

3=assistant professor

1=males, 0=females

1=9-month appointment, 0=otherwise

Number of citations received in a particular year

Annual salary of faculty members

Years of experience

Natural log of annual salary

Squared years of experience

Note that the variable for academic rank is a categorical variable.

Accordingly, the first step is to create dummy variables for each of the three

academic ranks (Full- 1 if Rank= 1, 0 otherwise; Asso = 1 if Rank= 2, 0

otherwise; Asst= 1 if Rank= 3,0 otherwise). Descriptive statistics for these

and selected variables are shown in Table 4.

The SPSS output shows that, on average, male faculty earn almost

$11,000 more (or 20%) than female faculty. At the same time, on average,

male faculty have received almost twice as many citations as females for

103



Table 4

SPSS Output: Descriptive Statistics for Faculty

Report

Mean

gender

0

1

Total

annsal

45841.14

56833.92

54492.87

yrsexp

14.7591

19.9744

18.8637

full

.2065

.5882

.5069

asso

.4348

.3000

.3287

asst

.3587

.1118

.1644

cites

5.30

10.19

9.15

their published work, have over five years of additional experience, and are

more likely than females to be employed at the full professor level. Together,

these factors might help account for the large difference in average salaries

between male and female faculty.

To determine how years of experience, citations, and gender influence

salary, the analyst might estimate a salary model (Model 1) and obtain the

following results:

Table 5

SPSS Output: Regression Results for Faculty Salaries - Model 1

Model Summary

Model

1

R

.461a

R Square

.212

Adjusted
R Square

.207

Std. Error of

the Estimate

13954.16965

a. Predictors: (Constant), yrsexp, cites, gender

ANOVAb

Model

1 Regression

Residual

Total

Sum of

Squares

2.24E+10

8.33E+10

1.06E+11

df

3

428

431

Mean Square

7479066622

194718850.6

F

38.410

Sg.

.000a

a. Predictors: (Constant), yrsexp, cites, gender

b. Dependent Variable: annsal

Coefficients?

Model

1 (Constant)

gender

yrsexp

cites

Unstandardized
Coefficients

B

38540.912

7689.289

408.273

240.277

Std. Error

1854.690

1697.905

76.692

36.824

Standardized

Coefficients

Beta

.201

.235

.282

t

20.780

4.529

5.324

6.525

Sig.

.000

.000

.000

.000

a- Dependent Variable: annsal
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The coefficient of determination is shown in the column with the heading

"R square." The value of R2 = .212 indicates that 21% of the variations in

faculty salaries are explained by the variables gender, years of experience,

and citations. In the second box, the p-value for the F-statistic is approximately

zero, indicating that gender, experience and citations collectively have a

significant impact on salary.

Using the output from the third box, the equation relating gender,

experience and citations to salary can be written as follows:
A

Annsal = 38540.92 + 7689.29*Gender* 408.27* Yrsexp + 240.28* Cites

This model could be used to predict annual salary for a female professor with

twenty years of experience and five citations by substituting her values for

each variable into the equation:
A

Annsal = 38540.92+ 7689.29*(0) + 408.27*(20) + 240.28*(5) = $47,907.72

The calculated t-ratios for each of these variables are shown in the column

headed "t," and because each is highly significant, the null hypotheses that

each variable has no effect on salary can easily be rejected. The coefficient

on the variable Gender indicates that male faculty earn about $7,700 more

than female faculty with the same number of citations and years of experience.

Therefore, about 25% of the average salary difference is explained by these

two factors.

Suppose now that the analyst wished to examine whether also controlling

for academic rank would influence the findings of the study. To do this, the

analyst adds two of the three dummy variables for rank into the salary model

(Model 2) and obtains the following output from SPSS (see Table 6).

According to these results, 43% of the variation in salaries is explained

by the addition of the two variables for current rank. The coefficient for the

dummy variable Full indicates that Full Professors earn $22,989 more than

their peers who have similar levels of experience, citations, and gender. Note,

however, that the variable Yrsexp is no longer statistically significant. This

dramatic change in sign and significance level is because of the high correlation

between the rank and experience variables. This can be seen in the correlation

matrix provided. Not surprisingly, a faculty member's years of experience is

shown to be very highly correlated with whether the faculty member is a Full

Professor. While the other variables are also correlated with gender, the

correlation is too low to cause problems of multicollinearity. However, if there

is gender discrimination in promotion at the institution, then controlling for

rank in the salary model will lead to an underestimate of true pay disparity

between men and women because some of the pay disparity is caused by

slower promotion rates for women. It is at this point that the analyst should

examine the model and determine which correlations with gender are

appropriate and which correlations might be problematic due to gender bias.
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Table 6

SPSS Output: Regression Results for Faculty Salaries - Model 2

Model Summary

Model

1

R

.656a

R Square

.430

Adjusted

R Square

.423

Std. Error of

the Estimate

11897.25048

a. Predictors: (Constant), asso, cites, gender, yrsexp, full

Coefficients?

Model

1 (Constant)

gender

yrsexp

cites

full

asso

Unstandardized

Coefficients

B

37942.101

2959.464

-94.490

177.660

22988.554

8288.327

Std. Error

1814.660

1496.388

76.343

31.792

1962.131

1782.094

Standardized

Coefficients

Beta

.077

-.054

.208

.734

.249

t

20.909

1.978

-1.238

5.588

11.716

4.651

Sig.

.000

.049

.217

.000

.000

.000

a. Dependent Variable: annsal

Correlations

yrsexp pearson correlation

Sig. (2-tailed)

N

full Pearson Correlation

Sig. (2-tailed)

N

asso Pearson Correlation

Sig. (2-tailed)

N

gender Pearson Correlation

Sig. (2-tailed)

N

yrsexp

1

432

.521**

.000

432

-.252**

.000

432

.237**

.000

432

full

.521**

.000

432

1

432

-.710**

.000

432

.313**

.000

432

asso

-.252**

.000

432

-.710**

.000

432

1

432

-.117*

.015

432

gender

.237**

.000

432

.313**

.000

432

-.117*

.015

432

1

432

• Correlation is significant at the 0.01 level (2-tailed).

Correlation is significant at the 0.05 level (2-tailed).

In many universities, salary increases are given as a percentage of

income rather than a fixed dollar amount. Accordingly, a semilogarithmic

salary model may better represent the salary determination process at the

institution. To test this idea, the analyst replaces the variable Annsal with

Lsalary and reestimates the equation. The main results for Model 3 are

shown in Table 7.
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Table 7

SPSS Output: Regression Analysis Results for

Faculty Salaries - Model 3

Coefficients3

Model

1 (Constant)

gender

yrsexp

cites

full

asso

Un standardized
Coefficients

B

10.555

.065

-.003

.003

.455

.191

Std. Error

.029

.024

.001

.001

.032

.029

Standardized

Coefficients

Beta

.098

-.102

.199

.847

.334

t

361.010

2.679

-2.466

5.692

14.384

6.658

Sig.

.000

.008

.014

.000

.000

.000

a. Dependent Variable: Isalary

The resulting salary model is written as:
A

Lsalary = 10.555 + 0.065*Gender- .003*Yrsexp+ .003*Cites+.455*Full

+ .191 *Asso

The coefficient on the variable Gendersuggests that after controlling for the

effects of years of experience, citations, and current academic rank, male

faculty earn approximately 6.5% more than female faculty. The level of

significance for Gender is also notably higher than before, with a p-value =

.008 compared to a p-value = .049 in the linear salary model.

Suppose now that the analyst wanted to determine if there is a quadratic

relationship between a faculty member's actual salary and his/her level of

experience. To test this hypothesis, the variable for squared experience

(Yrsexp2) is added to the regression model, and the following results (Model

4) are obtained:

Table 8

SPSS Output: Regression Analysis Results for F

acuity Salaries - Model 4

Coefficients3

Model

1 (Constant)

gender

cites

yrsexp

yrsexp2

Unstandardized

Coefficients

B

34377.041

7421.761

242.275

940.477

-13.004

Std. Error

2933.688

1699.584

36.740

300.934

7.112

Standardized

Coefficients

Beta

.194

.284

.542

-.315

t

11.718

4.367

6.594

3.125

-1.829

Sig.

.000

.000

.000

.002

.068

a- Dependent Variable: annsal
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The effect of experience on salary (ignoring the other variables in the

model) can be written as:
A

Annsal = 940.48* Yrsexp -13.00* Yrsexp2

The fact that the estimated coefficient on the squared variable is negative

indicates that the quadratic curve is hill-shaped and not U-shaped. The

change in salary due to a one-year increase in experience is found by taking

the first partial derivative of this equation:

Change in Annsaldue to change in Yrsexp = 940.48 - 26* Yrsexp

Accordingly, annual salary increases at a decreasing rate as a faculty

member's years of experience rises up to 36 years of experience, and then

would begin to increase at an increasing rate.

Summary

This chapter has provided an overview of regression analysis and how it

can be used by institutional researchers. Regression analysis is an attractive

option for statistical inquiries because of its flexibility. The technique can be

used for many types of variables - continuous, discrete, dichotomous - and

through variable transformations can accommodate even categorical variables

into the analysis. Likewise, appropriate variable transformations can enable

regression models to estimate non-linear relationships between variables of

interest. Regression analysis is valuable for not only testing hypotheses

about whether specific factors are related to each other, but also for quantifying

the relationships and using these to derive forecasts of dependent variables

of interest.
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Chapter 4

What Can Multilevel Models Add to

Institutional Research?

Stephen Porter

Why should institutional researchers care about multilevel modeling

techniques? Because institutional research is, at its heart, the analysis of

institutional structures, and multilevel models offer one of the best ways to

accurately understand the effects of these structures on faculty and students.

We are often interested in assessing the impact of structures within our

institutions, such as academic departments, or more often, in describing

and understanding differences between institutions. For example, much of

our data collection efforts, such as the IPEDS surveys and college guidebook

requests, are used to compare and contrast institutions. It is only natural

that we use statistical techniques that can appropriately analyze the

complexity of our institutions, and in turn, the complexity within our data.

The advantage of multilevel models lies in their analytical approach.

Analyses of survey data collected from students across multiple colleges

generally use traditional multiple regression, or ordinary least squares (OLS),

to understand individual and institutional correlates of student attitudes and

behavior (e.g., Hu & Kuh, 2003a; Kuh & Hu, 2001; Toutkoushian & Smart,

2001). With this approach one model is estimated, and the coefficients of

the model are constrained to be constant across schools. Thus, the impact

of being female on engagement, for example, is estimated to be the same for

each school. Multilevel models (or as they are also called, hierarchical linear

models), estimate a model for each school in the sample, even for schools

with few student observations. Often the values of these coefficients will

differ for each school, so there may be no difference in engagement between

males and females in some schools, while in other schools the difference

may be quite large. This variation is of substantive interest, and we can use

variation in institutional structures to analyze variation in these coefficients.

What aspects of colleges, for example, are successful in ameliorating

differences in engagement between males and females, and conversely, what

college structures exacerbate these differences? Multilevel models can answer

these questions in ways that OLS cannot.

The difference between multilevel models and OLS is more than a

statistical quibble. Because regular regression techniques do not take into

account the grouping of individuals within organizations, they can yield biased

coefficients and standard errors when analyzing these data. This means

that we may draw the wrong conclusions about how college structures affect

individuals. Are liberal arts colleges better at creating diverse learning

environments (Umbach & Kuh, in press)? Do students at research universities

experience less contact with faculty than students at other types of institutions
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(Kuh & Hu, 2001)? Are there differences in student development between

historically Black institutions and historically White institutions (Kim, 2002b)?

These are important questions, and as educational researchers we want to

minimize the chance that our answers to these questions are misleading.

While there are a large variety of multilevel models, I focus here on an

application most likely to be of interest to institutional researchers: the analysis

of individuals nested within academic organizations such as departments or

colleges. Most of the recent multilevel research in higher education has focused

on analyzing students and faculty within multiple departments and multiple

colleges, so this approach will also provide the reader with the background to

understand this common application of multilevel models. The end of this

chapter will briefly describe other applications of multilevel models.

After first discussing the advantages of multilevel models over OLS, I

will review the theoretical background of these models. The third section

presents an overview of practical modeling considerations, and the fourth

section uses the 1998 Beginning Postsecondary Student Survey to illustrate

the multilevel approach. The chapter concludes by reviewing further reading

and software.

OLS versus Multilevel Models

Three issues arise when using OLS to analyze data on individuals

grouped within organizations: misestimated standard errors, aggregation bias,

and heterogeneity of regression coefficients (Raudenbush & Bryk, 2002, pp.99-

100).

First, a fundamental assumption of OLS is that the error terms are not

correlated across observations. Simply put, "this means that in repeated

samples there is no tendency for the disturbance associated with one

observation (corresponding, for example, to one time period or one individual)

to be related to the disturbance associated with any other" (Kennedy, 2003,

p. 134). This assumption is likely to be violated when individuals undergo

similar experiences, such as students learning within colleges, or faculty

working within academic disciplines. The result is misestimated standard

errors for individual-level variables; therefore, hypothesis tests for these

variables may be faulty.

Additionally, we often want to estimate the impact of departmental or

college attributes; for example, is student satisfaction higher in schools with

low student-faculty ratios? If we attach school-level data to our individual-

level data and run a standard regression analysis, the standard errors for the

school-level variables will be underestimated. OLS assumes the number of

schools is the same as the number of individuals, when in fact the number of

school-level observations is much smaller.

Second, we may be interested in disentangling person-level and

compositional effects. Suppose we aggregate our student data to the college

level, so that we now have average SAT scores for each school. If we use
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these to predict graduation rates and find a relationship, what can we conclude?

The issue here is that SAT score is both a measure of individual student

aptitude as well as a measure of institutional selectivity, two related but

theoretically distinct concepts. Multilevel models can appropriately

disentangle these effects, so that we can understand the impact of a student's

academic background, as well as the impact of attending a selective institution.

Third, OLS cannot handle substantial heterogeneity of regression

coefficients; that is, regression coefficients that differ for each group in a

sample. Instead, regression coefficients are fixed across groups. Multilevel

models can estimate a different coefficient for each group; for example, the

impact of socioeconomic status on student satisfaction can differ for each

college in a multi-college data set. More importantly, the reason why the

impact differs can in turn be explained by the multilevel model. The classic

example is the moderating effect of parochial schools on the relationship

between a secondary student's socioeconomic status and their math

achievement (Raudenbush & Bryk, 2002, pp. 119-130).

Theoretical Background

Many people new to multilevel models have difficulty in understanding

the approach, not because of the mathematics, but because they have been

taught to consider regression coefficients to be fixed. Conversely, in the

multilevel approach these coefficients can vary. One of the easiest ways to

understand the multilevel approach is to consider the "slopes as outcomes"

approach.1

Suppose we have an engagement survey of college students from fifty

different colleges, with 100 responses for each school, so that the total survey

N equals 5,000 students. Rather than run an OLS model on the entire sample,

we could instead run a separate regression model for each school, analyzing

how student attributes such as gender and socioeconomic status affect

student engagement within each school. We could then take the results for

each school and enter the intercepts and coefficients for the independent

variables into a spreadsheet. This would give us fifty lines of data, one for

each school regression model. By adding additional columns of data that

describe the schools, such as number of undergraduates and expenditures

per student, we could run a second-stage regression that would explain

variation in the schools' intercepts and coefficients due to student body size

and level of resources. For the types of multilevel models used to understand

the impact of organizations, this is, in essence, how multilevel models work,

albeit with different statistical techniques than OLS.

We can describe how these models work more formally with equations.

Use of these equations is necessary for two reasons. First, the models can

become quite complex as both the intercept and coefficients are allowed to

vary; using simple algebraic notation allows us to keep track of and understand

exactly what we are estimating. Second, understanding the notation is crucial
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to using and interpreting the software programs that estimate multilevel

models. The software program HLM, for example, uses this notation to

present results, while the user must use equations to determine the structure

of the program code in SAS PROC MIXED (Singer, 1998).

To review multilevel notation, I use the classic example of student high

school math achievement as predicted by socioeconomic status (SES) and

high school public/private status. This is the example used by Raudenbush

and Bryk (2002, chapter 4) and other researchers, and will make reading

their texts easier if the reader wishes to learn more about multilevel models.

The Random Intercept Model

The random intercept model is probably the most common multilevel

model seen in higher education literature, and is used to correctly estimate

the impact of institutional structures on individual behavior. The name stems

from the single random component of the model, the intercept: a separate

intercept is estimated for each school, but the regression coefficients for the

independent variables are held constant across schools. Recent examples

include Hu and Kuh (2002), Kim (2002b), and Umbach and Porter (2002).

Equation 4.1 describes the familiar OLS regression equation, where Y,

is the math achievement test score of student /. As with any regression

equation, the intercept, pois the expected value of the dependent variable

when X(SES) equals zero, while the regression coefficient p1 is the expected

change in math achievement given a one unit change in student SES. Each

student has a random error term, r which reflects the difference between the

student's predicted math achievement and their actual math achievement

test score. These errors are assumed to be normally distributed with a mean

of zero and variance a2.

For both interpretive and mathematical considerations, the independent

variables in multilevel models are often rescaled by subtracting the mean

value of the independent variable (X )from each observation. If the mean is

the overall mean of the sample, such rescaling is referred to as grand-mean

centering] SES can now be represented as (X. - X) so that Equation 4.1

can be rewritten as:

^. = fio + 51(X/-X) + r. [4.2]

Table 1 shows several hypothetical students and their SES backgrounds.

In this example, SES is measured on a scale that ranges from one to ten,

and the mean SES for the entire sample is four. Note that with grand-mean

centering, students with SES above the mean have positive scores, students

below the mean have negative scores, and students at the mean have a
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score of zero. Thus grand-mean centering provides a more meaningful

interpretation of the intercept p0: rather than the math achievement of a student

with zero SES (a nonsensical interpretation given that the original SES scale

ranges from one to

« .- -*■_]? -i .■ r, m. - ten), Bn now represents
Rescaling wth Grand-Mean Centermg the man achievement

ses score (1-10 scale) of a student with
average SES. Other

Sfcden, r™ ""TT* va.ues can also be
(X =4) used for centering,

such as the group

A 2 "2 means or values
B 7 3 determined by

0 1 _3 substantive theory.

Equations 4.1

and 4.2 are the

e io 6 standard regression

equations found in any

basic econometrics textbook. Note that when applied to student data from

multiple institutions, the effect of SES (6r) is the same for every school, and

average SES (BJ is also the same for every school. But Equation 4.2 can be

rewritten to represent separate equations for each school:

^jX^XJ+ r, [4.3]

Here, they subscripts indicate individual schools, just as the /subscripts

indicate individual students. Y.p X., and r.. have j subscripts to indicate the

scores and error terms for student / in a particular school y, and the two

period subscripts for X indicate that this mean has been calculated over the

entire sample and is not conditional upon schools or individuals. Because

we are now estimating a separate equation for each school, each Sohas ay

subscript to indicate the intercept for school y, but the effect of SES remains

constant across schools.

We can use Equation 4.3 to describe an individual student's math score

as comprised of three parts. Each student's score is determined by the

average math achievement score for their school j (80j), a deviation from this

average based on B1 times the student's SES score (with no deviation for the

student with an average SES score), and a unique student deviation or error

term r. Equation 4.3 is referred to as the level 1 model; it explains the variance

in the dependent variable at the first level of our data, the student level.

Because Bojvaries across schools, we can model this variance using a

second equation at level 2, the school level or second level of our data.2 The

simplest level 2 equation explains the variance in the school intercepts as

follows:
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Boj = 7oo+Uoj [4.4]

Here Bo. is a function of y00 the average of the school means for math

achievement, and a unique school-level deviation or error term u0.. These

errors are assumed to be normally distributed with a mean of zero and variance

T0Q. (The subscripts in multilevel models can be somewhat confusing. At

level 2, the first subscripted number indicates variables and coefficients

associated with a level 1 coefficient; here the intercept at level 1, Sohas a

subscript 0, so all level 2 variables and coefficients explaining the variance in

Bo. will have a 0 as the first subscripted number. The second subscripted

number refers to the variable order in the level 2 equation; here there is only

one variable, but as variables are added the second subscripted number will

increase.)

The level 2 equation can be more complex. Suppose we believe that

math achievement varies between schools in large part because of their public/

private status. We can add a dummy variable Wto our model that takes a

value of one for private schools, zero for public schools. The level 2 equation

contains this school-level variable to explain the variance in the school

intercepts:

Boj=rn + roxWj+uOJ [4.5]

Note that interpretation changes here with the addition of explanatory

variables at level 2. Inclusion of a dummy variable changes the interpretation

of the intercept, just as in OLS. Boj is now a function of y00, the mean of the

dependent variable for private schools, IV, the public-private dummy variable,

Y01 a coefficient measuring the impact of private school status on Bop and a

school-level error term u0]. Additional school-level variables could also be

included in this equation, such as school size or racial makeup of the student

body.

In terms of substantive theory, this statistical approach is similar to the

equations estimated by Toutkoushian and Smart (2001), who used variables

such as student body size and expenditures per student, as well as student-

level variables, to understand the impact of institutions on student gains in

college. While they used OLS, the goal of their model is the same as that of

Equations 4.2 and 4.3: explain the variation in student gains with student variables

such as gender and race, and college variables such as size and finances.

In sum, the random coefficient model is substantively similar to the

traditional regression model run on combined student and school data. The

level 1 model estimates the impact of student-level variables on the dependent

variable, and produces a set of intercepts for each school. These intercepts

have been adjusted for differences in the makeup of the student body across

schools due to the inclusion of the level 1 variables. Variation in these intercepts

is then explained by school-level variables in the level 2 model.
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The Random Coefficient Model

The only difference between the random intercept model and random

coefficient model is that one or more coefficients for the independent variables

have been allowed to vary across schools, so that a different coefficient is

estimated for each school. It is less common in the higher education literature,

in part because estimating additional random components beyond the

intercept requires considerable data. Examples include Hu and Kuh (2003b),

Porter and Umbach (2001), and Rumberger and Scott (1993).

This difference is illustrated in Equation 4.6, where the slope coefficient

B1 now has an additional subscript /, indicating that it also varies across

schools. Substantively, this means that the impact of SES on math

achievement is now different for each school. In some schools there may be

no difference in math achievement between high and low SES students; in

these schools, B1 is very close to zero. In other schools, B1 may be large and

positive, indicating that high SES students have higher math achievement

scores than low SES students.

1^,+ZyX,-*,)+ /:. [4.6]

This small change now allows us to investigate a very interesting

substantive question: what is it about some schools that makes it possible

forthem to erase performance differences between high and low SES students?

Suppose our hypothesis is that private schools are more egalitarian in their

outcomes; that is, we think that the impact of SES is much smaller for

private than public schools. We can test this hypothesis with an additional

level 2 model.

Before constructing the level 2 model, we must first revisit the issue of

centering. Centering is one of the more contentious areas in multilevel

modeling, because reasonable scholars can disagree as to whether a variable

should be centered, and if so, how. For the random intercept model, most

analyses will either not center the independent variables or use grand-mean

centering. For the random coefficient model, described here to investigate

organizational effects, we can rely on a simple rule of thumb: when the

coefficient of an independent variable is randomized, that is, when we run a

level-2 equation explaining variance in the coefficient, then the independent

variable will be group-mean centered. As with any rule of thumb there will be

exceptions, but in most analyses this will be the appropriate centering choice.

Group-mean centering indicates that the independent variable is rescaled

by subtracting from each observation the mean value of the independent

variable for the group rather than the mean value for the entire sample. Table

2 revisits the hypothetical students and their SES scores, which are measured

on a scale that ranges from one to ten; students are grouped in three different
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schools. Each student's SES is now represented by (X. - X7)that is, the

mean SES for their school j is subtracted from their SES score. For example,

student F in school 2 has a relatively high SES score, 7. Because the other

students in school 2 also have high SES scores (the school mean is 6.67),

student F's group-mean centered SES score is now .33, indicating that student

F is .33 SES units above

the average student in Table 2
school 2. Rescaling with Group-Mean Centering

In this application

group-mean centering is

preferred for estimation

reasons; however, by

group-mean centering

SES, we have lost the

information that

differentiates the

schools in terms of

SES. In Table 2,

students F and K have

very similar group-mean

centered SES scores

(.33 and .25), but their

raw SES scores differ

quite a bit (7 and 4),

because the mean SES

for the two schools

differs (6.67 versus

3.75). These group

means are usually

introduced back into the

model in the level 2

equations.

Recall that our first

level 2 model explained variation in the intercepts with schools' public/private

status. We can construct a similar model for the SES coefficient:

B\j = 7\o + 7nWj + 7uXj + u\j [4.7]

Here BXj is now a function of y10, the average effect of SES on math

achievement for private schools, I/I/, the public-private dummy variable, y^ a

coefficient measuring the average effect of SES for private schools, y12 the

effect of mean school SES on the impact of SES at the individual level, and

a school-level error term ur]. As with the intercepts, the errors ^.are assumed

to be normally distributed with a mean of zero and variance xj

School

1

1

1

1

1

2

2

2

3

3

3

3

Student

A

B

C

D

E

F

G

H

I

J

K

L

SES

Raw

2

7

1

4

10

4.80

7

8

5

6.67

3

6

4

2

3.75

score (1-10 scale)

Grand mean centered

-2.80

2.20

-3.80

-.80

5.20

.00

.33

1.33

-1.67

.00

-.75

2.25

.25

-1.75

.00
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To test our hypothesis about private schools, we would estimate a

multilevel model using Equations 4.6 and 4.7 and an equation similar to

Equation 4.7 for the intercepts (as explained below, when estimating a level

2 model for coefficients it is advisable to also estimate the same model for

the intercepts). We would expect both y10 and y^ to be statistically significant,

y10to be large and positive, indicating that high SES students have higher

math achievement than low SES students in public schools, and yAi to be

negative, indicating that the impact of SES is lower in private schools compared

with public schools.

If y12 were statistically significant and negative, this would indicate that

the differences in math achievement between high and low SES students

(recall that this is the interpretation of the level 1 coefficient, BXj) are reduced

as the mean SES for a school increases. If we consider mean student SES

for each school (Xmj) as a proxy for school and neighborhood financial

resources, a negative value for y12 indicates that the values of the level 1

coefficient for SES decreases as schools become wealthier: wealthy schools

are more egalitarian. The reverse would be true if y12 were positive.

We can see that random coefficient models can become exceedingly

complex, with possibly a separate level 2 equation for each level 1 variable.

In practice, the data usually cannot handle so many different random effects

and equations, and often only one or two level 1 coefficients are randomized.

For example, Hu and Kuh (2003b) estimate a level 1 model where student

gains in growth and development are predicted by student effort and other

student-level variables, while the intercept is randomized and a level 2 model

including variables such as selectivity and Carnegie type is estimated. In

addition, they randomize one regression coefficient, student effort, and

estimate the same level 2 model for the student effort regression coefficient.

Thus, they investigate not only the impact of institutional characteristics on

student gains, but they also explore why some institutions are successful in

translating student effort into academic development and others are not.

Summary

Figure 1 shows the full sets of equations for the random intercept and

random coefficient models. With the random intercept model, a student-

level equation is estimated for each school, where the intercept differs for

each school but the impacts of the independent variables are constrained to

be equal across schools. With the random coefficient model, this constraint

is relaxed and a different coefficient is estimated for each school. Variation

in these intercepts and coefficients is explained by school-level variables in

the level 2 models. For statistical reasons, in random coefficient models, the

level 1 variables are usually group-mean centered and the group means are

used as independent variables at level 2; in random intercept models the

variables are either left uncentered or are grand-mean centered.

118



Applied Modeling Considerations

This section reviews some of the practical aspects of multilevel modeling,

beginning with the first question that should be answered: should one use

multilevel modeling for an analysis? The answer depends on the type of data

and the variation within the data.

Figure 1

Two Approaches to Understanding Organizational Effects

Random intercept model

Objective: understand the impact of group-level variables on the dependent variable

Centering: usually uncentered or grand-mean

Level 1 Y^Boj+B^Xg-xj+ry Explain variation in dependent variable

i
Level 2 BOj = ym + y0lWj + uOj Explain variation in intercepts

Random coefficient model

Objective: understand how the group-level variables explain variation in the

individual-level regression coefficients

Centering: usually group-mean

Level 1 Yu; = Boj + B^Xy-x^ + ry Explain variation in dependent variable

Level 2

t
B\j - Y\o + YuWj + yl2x j +u{j Explain variation in slopes

Level 2 Boj - Yw + YoW + Ymxj+% Explain variation in intercepts

Data Requirements

Whether multilevel modeling can be used depends on the structure of

the data. In general, most multilevel modelers recommend a minimum of

thirty groups, with the number of individuals per group averaging at least ten

(note that it is possible to have a few groups with only one individual). This is

only a rule of thumb, and smaller sample sizes can be used, but consider

why we would want large numbers of individuals within groups and large

numbers of groups.

First, multilevel models estimate coefficients for each group. These

coefficients are subject to sampling error, as they are derived from samples

from each group; for example, we may have only twenty students from a

school of 3,000 students. As the sample size for a group increases, the

reliabilities for the group estimate become larger. HLM estimates are based
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on a weighted average of the group estimate and the entire sample mean; as

reliabilities increase, more weight is placed on the group mean. Thus, having

more individuals per group rather than less, generally results in a larger variance

in group-level estimates.

Second, the level 2 models are estimated using the group coefficients

and group characteristics as data; the N at level 2 is much smaller than at level

1. Thus the greater the number of groups, the smaller our standard errors will

be. In addition, more groups will often permit more randomized coefficients.

For discussions of the number of groups and group sizes needed, see

Raudenbush and Bryk (2002, chapter 9) and Heck and Thomas (2000, pp.

26-30). These discussions are especially helpful when planning a research

study, as one can use power analyses to derive estimates of the number of

groups and group sizes needed.

Intraclass Correlation: Proportion of Variance between Groups

Whether multilevel modeling should be used is contingent on how much

variation in the dependent variable is explained by group membership. It is

calculated by running the null model, a multilevel model with no variables at

either level 1 or level 2, so that only the individual level variance and group-

level variance components are estimated. The intraclass correlation (ICC) is

a measure of the variation in the dependent variable between groups and is

given by the following formula:

where a2 is the measure of the within group or individual-level variance, and

Too is the between group variance, or the variance in the intercepts. As can

be seen, as the variance in the intercepts Too grows larger, p grows larger,

and if Too is close to zero, the ICC will be close to zero.

The often quoted rule of thumb is that multilevel modeling is appropriate

if the ICC is greater than .05; that is, if at least 5% of the variance in the

dependent variable is between groups. However, multilevel models with

statistically significant variables at level 2 can be estimated even when the

ICC is low as .4% (see e.g., Merlo et al., 2001). This rule of thumb should be

reinterpreted. One should not be surprised if multilevel modeling results are

very similar to OLS results when the ICC is less than 5%, as this indicates

that the group means for the dependent variable are very similar; hence there

is little variation to model between groups. This variation can still be

successfully modeled, and multilevel models should generally be used on

such data if group-level variables are included in the model.

In general, the ICC will vary between zero and .40 in most social science

research (Snijders & Bosker, 1999, p. 151). As an illustration of the typical

ICC in higher education, the ICCs reported in several higher education research

articles are listed in Table 3. Most of the ICCs range between 5% to 10%,
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Table 3

Intraclass Correlations in Higher Education Multilevel Research

Study

Hu and Kuh (2003b)

Johnsrud & Rosser (2002)

Kim (2002b)

Kim (2002a)

Porter&Umbach(2001)

Rosser et al. (2003)

Rumberger & Thomas

(1993)

Smyth & McArdle (2004)

Strauss & Volkwein (2004)

Thomas (2000)

Umbach & Porter (2002)

Data

44,238 students in 120 schools

1,511 faculty in 10 schools

1,069 students in 81 schools

1,397 students in 86 schools

1,104 faculty in 103 academic

disciplines

865 faculty and staff rating 22

deans and directors

7,235 students in 36-146

schools, depending on major

5,047 students in 23 schools

8,217 students in 51 schools

3,382 students in 328 schools

1,532 students in 54 academic

departments

Dependent variables

7 self-rated learning scales

6 work related scales

3 self-rated ability scales

3 self-rated ability scales

Publications and grants

7 evaluation scales

Salaries of college

graduates for 6 major

groups

Science major graduation

from college

Institutional commitment

scale

Earnings and debts of

college graduates

4 satisfaction and self-rated

development scales

ICC

.03 to .09

.01 to .15

.15 to .25

.16

.18, .32

.07 to .16

.12 to .25

.04

.10

.08, .10

.06 to .08

with more objective data, such as salaries or publications, having higher

ICCs than more subjective data, such as scales based on self-ratings.

Building Models and Randomizing Coefficients

Once the decision is made to use a multilevel modeling approach, the

first step is building the random intercept model. This involves completely

specifying the individual-level model first, and then building the group-level

model. In terms of higher education, we can think of this as first building a

model explaining why our dependent variable varies within colleges, and then

having explained the within-college variation, next building a model that explains

variation between colleges.

The next step is deciding whether to estimate a random coefficient

model; that is, to explain why some of the coefficients for the independent

variables differ between colleges. The actual specification of the random

coefficient model can be complex, because a model can be estimated for

every independent variable in the model (although the data may not support

such a complex model). Here, both theory and statistics will guide the

model building.

When determining which coefficients should be random, theory should

drive the choice. For example, natural choices for randomization are the

coefficients for gender and race. Voluminous research has documented

differences in student outcomes between males and females and between
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racial and ethnic groups, and it is possible that these differences may vary

between institutions because of differences in institutional structures; for

example, HBCUs and women's colleges may provide different outcomes for

Blacks and women than other institutions (Kim, 2002a, 2002b).

If we have theoretical reasons why we expect that the effect of a variable

may differ between colleges, we can use a statistical test to determine if this

is indeed the case. Software programs that estimate multilevel models produce

not only the variance components for the intercepts and coefficients that have

been randomized, but they also test the null hypothesis that each variance

component is zero. If we can reject the null hypothesis, that is, if the variance

componentfor a randomized coefficient is statistically significant, we can conclude

that a particular regression coefficient does indeed vary between schools.

Finally, if a random coefficient model can be used, the issue arises

concerning what variables should be used to explain variation in a coefficient.

In general, most researchers recommend similar models for the intercept

and slope(s). Often, the randomized intercepts and slope coefficients may

be correlated. If group-level variables are used in the slope model and not in

the intercept model, due to the intercorrelation these variables may show an

effect on the slopes even if the group-level variables only explain variance in

the intercepts.

Measures of Variance Explained

Similar to OLS, variance explained measures can be calculated for

multilevel models, but because there is both an individual-level model and a

group-level model, there are two variance explained measures in a two-level

multilevel model. Recall that the null model is estimated by running a multilevel

model with the intercept randomized and no additional independent variables.

Two variance components are estimated: the individual variance o2 and the

variance in the intercepts (or school-level means) t00. By comparing the

variance components from our full model (the model with one or more

independent variables) to the variance components from the model with no

independent variables, we can calculate how much variation in our dependent

variable at levels 1 and 2 is explained by the full model.

Supposewe estimate a random intercept model with several independent

variables at both the individual and school level; we can calculate the variance

explained using the following formulas: 2 2

Variance explained at level 1 = C7nullmode,1 "<7fullmodel

Variance explained at level 2 = Tnullmodcl ~Tfullmodel
^"nuU model [4-10]

With both formulas, we can see that if the variance components from

the full model are similar to the null model, then the variance explained is

zero, and as the variance components from the full model become smaller
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(because some of the variation is being explained by the independent variables),

the variance explained statistics become larger. In addition, similar to the R-

square, these measures will generally fall between zero and one.

Case Study: Student Engagement Across Institutions

To illustrate the multilevel approach, I use the Beginning Postsecondary

Student Survey, a panel study of college students conducted by the National

Center for Education Statistics beginning in the 1995-1996 academic year. I

include only students enrolled in a Carnegie Research, Doctoral,

Comprehensive or Liberal Arts College, resulting in 4,481 students in 360

schools with an average of twelve students per school. In other words, the

level 1 units are students, and the level 2 units are colleges and universities.

From the survey I constructed a factor score of student engagement, using

nine questions that ask the students how often they engaged in activities

such as meeting with faculty, writing papers or using the library (alpha=.67).

Two sets of independent variables are used to predict student

engagement. At the student level, four dummy variables measuring whether

a student is female, non-white, a first-generation college student, or a full-

time student are included, as well as two continuous variables, SAT score

and first-year college grade-pointaverage (GPA). At the school level, several

variables are included to control for major differences between institutions.

Enrollmentand a squaredenrollmentXexxw to allow for nonlinearities control

for differences in size, while Barron's selectivity index controls for differences

in selectivity (this measure varies from zero for non-competitive schools to

five for the most competitive schools). The percentage of female

undergraduates controls for differences in the student body, and the percentage

of graduate students in the total student body is included as a measure of

institutional emphasis on research. Finally, two dummy variables for Historically

Black Colleges and Universities (HBCU) and public institutions are also

included in the model as control variables.

Table 4 presents results for the multilevel random intercept models and

corresponding OLS models. In all models in this table, the student-level

variables are grand-mean centered, the school-level continuous variables are

grand-mean centered, and the school-level dummy variables are not centered.

Model 1 is the null model, a multilevel model with no independent

variables and only the intercept randomized. From the variance components

at the bottom of the table, we can see that the ICC equals .14 (.1383/

(.8161 +. 1383)), so about 14% of the variation in engagement scores is between

colleges. Note that the intercept is close to zero and not statistically

significant. The intercept shows the average value of the dependent variable,

and because the dependent variable is a factor score with mean zero, this

result is exactly what we would expect to see.
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Table 4

Correlates of Engagement, Multilevel and OLS Estimation

Student-level (N=4,481)

Female

Non-white

1st generation

SAT score

College GPA

Full-time

School-level (N=360)

Enrollment

Enrollment squared

Selectivity

% female students

% graduate students

HBCU

Public

Intercept

Variance components

<72

ICC

Student-level: % van exp.

School-level: % var. exp.

adj. R-square

Multilevel random intercept model OLS

1

.0362

(1.42)

.8161**

.1383**

.14

2

.1390**

(4.81)

.1652**

(4.42)

-.0873**

(-2.88)

-.0006**

(-6.45)

.0012**

(6.39)

.2290**

(5.27)

.0236

(0.94)

.7901**

.1328**

.03

.04

3

.1327**

(4.49)

.1593**

(4.22)

-.0757*

(-2.51)

-.0007**

(-7.50)

.0011**

(6.11)

.2057**

(4.79)

-.0167**

(-2.61)

.0002*

(2.01)

.0975**

(4.19)

.1106

(0.94)

-.0920

(-0.45)

-.0895

(-0.81

-.2714**

(-4.20)

.2041**

(4.51)

.7915**

.0750**

.03

.46

Note: t-statistics are shown in parentheses; p<.01 **, p<.05 *

All variables are grand-mean centered except for HBCU and

4

.1612**

(5.47)

.1401**

(4.09)

-.1306**

(-4.29)

-.0005**

(-5.68)

.0012**

(6.37

.2854**

(6.64)

.0187

(1.30)

.04

p<.10 +.

public.

5

.1390**

(4.58)

.1441**

(4.02)

-.0941**

(-3.15)

-.0007**

(-7.82)

.0011**

(5.70)

.2240**

(5.32)

-.0166**

(-3.96)

.0002*

(3.12)

.0921**

(5.72)

.0994

(1.11)

-.0805

(-0.56)

-.0840

(-1.08)

-.2847**

(-6.45)

.2205**

(7.09)

.09
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Model 2 estimates a model of engagement using only student-level (or

level 1) variables; the corresponding OLS model is shown in Model 4. In

general, the results are similar for the two models, although there are some

differences. The coefficient for first-generation college student status in the

multilevel model, for example, is about a third smaller than the corresponding

coefficient in the OLS model. Both models indicate that females, non-whites,

second-generation and full-time students have higher levels of engagement

than male, White, first-generation and part-time students. Although the

coefficients for SAT score and GPA are statistically significant, (which is not

surprising given the student N of over 4,000 students), their substantive impact

is almost zero.

Models 3 and 5 show the full multilevel and OLS model results when

the school-level (or level 2) variables are included in the models. Comparing

the coefficients across the two models, the results appear similar, but a

comparison of the t-statistics (in parentheses) shows large differences between

the two approaches. The t-statistics for the school-level variables are much

larger in the OLS model than the multilevel model; for the enrollment variable

the difference is 2.6 versus almost 4, for the public school dummy variable

the difference is 4.2 versus 6.5. The difference in t-statistic values indicates

one of the biggest problems in using OLS to estimate institutional effects on

individual-level data: the statistical significance of the institutional variables

will be overstated.

The variance components for Model 3 are shown at the bottom of the

table, and using Equations 4.9 and 4.10 we can determine the amount of

variation explained by the model. The variance explained at the student level

is rather small, 3% ((.8161 -.7915)/.8161), while the variance explained at the

school level is substantial, 46% ((.1383-.0750)/.1383). Clearly the student-

level or within-college model could be better specified in this example.

Comparing the intercept in Model 3 to the intercepts in Models 1 and 2,

we can see that the intercept is now positive and statistically significant.

Because the value of the intercept is the expected value of the dependent

variable when all the independent variables are zero, the intercept is essentially

zero in Models 2 and 3 because all the independent variables in this model are

grand-mean centered, and because the dependent variable has a mean of zero.

(Recall that with grand-mean centering, the independent variables all have a

mean zero, and the intercept is the average value of the dependent variable). In

model 3, the public and HBCU dummy variables are left uncentered, thus the

intercept is the predicted level of engagement for a student with average values

for the student-level variables, attending a historically White, private institution

that has average values for the continuous school-level variables.

In sum, the results for Model 3 suggest that student engagement is

affected by several student-level and school-level variables. The next question

to be answered is, does the impact of any of the student-level variables differ

across schools? Although any of the student-level variables could vary across
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schools, I focus here on the dummy variable for females. As seen in Model

3, Table 4, females are on average about .13 standard deviations more engaged

than males. The next set of analyses tests if this "gender gap" varies across

schools, and if so, if any of this variation can be explained by the school-level

variables.

The first column of Table 5 lists the results for Model 3 from Table 4, the

random intercept model for student engagement. Model 5 is the same model

as Model 3, with two exceptions. The female dummy variable at the student

level has been group-mean centered (recall that it was grand-mean centered

in Model 3), and the coefficient has been randomized. Model 6 is a random

coefficient model, where a different coefficient for the effect of gender has

been estimated for every college. No explanatory variables have been included

for the female coefficient other than an intercept and a random term (see e.g.

Equation 4.4). At the bottom of the table there is now a third variance

component T^, the variance of the coefficients for the female dummy variable.

The hypothesis test that this variance is equal to zero is rejected at p<.01,

so it is possible that we can model this variance in some way.

Model 7 in the last two columns of Table 5 is a simple attempt to model

the variance in the female dummy variable coefficient. Note that there are

two models, each with a different dependent variable. The first column is

similar to Model 6; the dependent variable is the student engagement factor,

and variance in this factor is partially explained by student-level and college-

level variables. The dependent variable in the second column is the female

dummy variable coefficient for each school, with variation modeled with only

school-level variables, as there is only one female slope coefficient per school.

One possibly confusing aspect of Model 7 is that there appears to be

no coefficient for the impact of being female on engagement. Because this

slope coefficient is now estimated for each school, we need the average of

these coefficients to understand for the impact of gender; this impact is the

intercept in the second column. Just as in the random intercept model, the

intercept is the average of the school coefficients. We can see that the value

of the intercept is .2797, much larger than the .16 in Model 6. Again, one

must be careful in interpreting the values of intercepts and slopes in a multilevel

model when they have been randomized. The value of .1594 in Model 6 is the

average of each school's female-male engagement difference. The .2797 is

not the average difference for all schools, but is instead the average difference

in engagement between females and males in a historically White, private

institution that has average values for the continuous school-level variables.

If both the HBCU and public dummy variables had been grand-mean centered,

the intercept in the second column would equal .16 rather than .28.

We can see from the statistical significance of the independent variables

in the slope model, as well as the variance explained measure at the bottom

of the table, that the model does a poor job explaining why females are more

engaged than males at some schools. However, it does appear that selectivity

may play a role in the impact of gender (p < .08).
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Table 5

Correlates of Engagement, Multilevel Random Intercept and

Random Coefficient Models

Dependent variable

Student-level (N=4,481)

Female

Non-white

1st generation

SAT score

College GPA

Full-time

School-level (N=360)

Enrollment

Enrollment squared

Selectivity

% female students

% graduate students

HBCU

Public

Intercept

Variance components

a2

7oo

*"„

Student-level: % var. exp.

School-level: % var. exp.

Female slope: % var exp.

Random intercept

3

Engagement

.1327**

(4.49)

.1593**

(4.22)

-.0757*

(-2.51)

-.0007**

(-7.50)

.0011**

(6.11)

.2057**

(4.79)

-.0167**

(-2.61)

.0002*

(2.01)

.0975**

(4.19)

.1106

(0.94)

-.0920

(-0.45)

-.0895

(-0.81)

-.2714**

(-4.20)

.2041**

(4.51)

.7915**

0750**

.03

.46

Random coefficient model

6

Engagement

.1594**

(4.22)

.1706**

(4.53)

-.0825**

(-2.74)

-.0007**

(-7.45)

.0011**

(6.08)

.2052**

(4.75)

-.0169**

(-2.71)

.0002*

(2.03)

.0965**

(4.21)

.2382*

(2.05)

-.0996

(-0.50)

-.1085

(-0.99)

-.2779**

(-4.39)

.2066**

(4.65)

.7625**

.0679**

.1378**

.07

.51

Note: t-statistics are shown in parentheses; p<.01 **, p<.05 *. p<.10

All variables are grand-mean centered except for HBCU and public;

Model 3 and group-mean centered in Models 6 and 7.

7 7

Engagement Slope for female

-

.1705**

(4.53)

-.0836**

(-2.77)

-.0007**

(-7.53)

.0011**

(6.11)

.2085**

(4.82)

-.0172**

(-2.76)

.0002*

(2.08)

.0990**

(4.33)

.2371*

(2.05)

-.0985

(-0.49)

-.1052

(-0.97)

-.2707**

H.29)

.2029**

(4.58)

.7628**

.0667**

.07

.52

-

-

-

-

-

-

-.0054

(-0.48)

.0001

(0.52)

-.0738+

(-1.79)

.0204

'(0.07)

.3741

(0.96)

-.2951

(-1.43)

-.1705

(-1.48)

.2797**

(3.41)

.1381**

.00

female is grand-mean centered in
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What does the selectivity result tell us about gender differences in

engagement? Because higher values of the selectivity measure indicate

more selective institutions, the negative coefficient for selectivity in the slope

coefficient model indicates that the female dummy variable coefficient is on

average smaller at selective institutions (recall that the intercept, or average

female dummy variable coefficient, is .28; for every unit increase in selectivity,

this coefficient drops in value by .07). Indeed, the results indicate almost no

differences in engagement between females and males at the most selective

institutions, and that the gender difference increases as a school becomes

less selective, thus the female-male disparity is greatest at non-competitive

schools.

Conclusion

Multilevel models offer institutional researchers another statistical tool to

investigate the effects of institutions upon students and faculty. While multilevel

models have several advantages over OLS, two of the most important are the

correct estimation of standard errors for institution-level variables, and the ability

to model why the effects of individual-level variables vary across institutions.

However, these advantages come at a price. Multilevel models require data

from multiple groups, and such data can be difficult and costly to compile.

Besides the application reviewed in this chapter, multilevel models can

be used for other analyses. The two-level model can easily be extended to

three levels, such as faculty nested within departments nested within colleges,

although such three-level models are currently uncommon in higher education

research. The ability to deal with grouped data also allows multilevel models

to be applied to other types of data. They can, for example, be used to

analyze data over time, such as multiple observations of students (Hedecker,

2004; Raudenbush & Bryk, 2002, chapter 6). Instead of students nested

within colleges, here observations of particular students are nested within

students. From a higher education perspective, one example might be an

analysis of why students' GPA varies from semester to semester, so each

student would have several semesters of observations. Finally, multilevel

models can also be used for meta-analyses of multiple studies

(Konstantopoulos & Hedges, 2004; Raudenbush & Bryk, 2002, chapter 7).

Additional Resources

Ethington (1997) covers much of the same material in this chapter in

greater detail and is an excellent short introduction to multilevel models.

After reading her chapter and this one, the reader should be an educated

consumer of most multilevel analyses published in higher education research

journals.

The classic multilevel text is Raudenbush and Bryk (2002), and this

book is a must-read for anyone wishing to begin using multilevel models for
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data analysis. They cover the major applications of multilevel analysis, as

well as many practical modeling issues. Heck and Thomas (2000) is another

excellent multilevel text, and is particularly useful for anyone wishing to learn

about multilevel structural equation models. Snijders and Bosker (1999) is a

standard text often used by European scholars. For two excellent discussions

of centering, see Kreft, De Leeuw and Aiken (1995) and Raudenbush and

Bryk (2002, pp. 31-35 and 134-149).

Several different software packages are available to estimate multilevel

models. Two of the most popular stand-alone packages are HLM (http://

www.ssicentral.com) and MLwiN (http://multilevel.ioe.ac.uk/index.html). The

former was written in part by Raudenbush and Bryk, and uses the same

notation and terminology of their text; in addition, a student version is available

for free at http://www.ssicentral.com/other/hlmstu.htm. The current list price

for a single-user license is $395 for HLM and $540 for MLwiN (with the academic

discount).

For many years SAS (http://www.sas.com) has had procedures available

for estimating multilevel models (PROC MIXED and PROC NLMIXED). Although

complicated to use, two papers clearly describe how to use SAS to estimate

both linear and nonlinear multilevel models. Singer (1998) is by far the best

introduction to using SAS for multilevel models, while Yang (2003) covers

nonlinear models.

SPSS has recently introduced a multilevel modeling module (http://

www.spss.com/advanced models/data analysis.htm): I have not used the

module but it appears complex. Other software possibilities include a free

module available for use with Stata to estimate multilevel models (http://

www.gllamm.org/) as well as modules available for the free statistics package

R (http://www.r-project.org/).

Besides the Web sites listed above, the following Web sites are also

useful resources for multilevel modeling:

• Multilevel Modeling Newsletter - http://multilevel.ioe.ac.uk/publref/

newsletters.html

• Multilevel listserv - http://www.jiscmail.ac.uk/lists/multilevel.html

• UCLA Multilevel Modeling Portal - http://statcomp.ats.ucla.edu/

mlm/

• Stephen Raudenbush's homepage - http://www-

personal.umich.edu/~rauden/

• Tom Snijders' homepage - http://stat.gamma.rug.nl/snijders/

multilevel.htm
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Endnotes

1 Raudenbush and Bryk (2002), pp. 117-118 discuss the technical issues

of using this approach with OLS.

2 Note that some scholars refer to level 1 as the micro-level, and level 2

as the macro-level (see Snijders & Bosker, 1999, p. 8).
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Chapter 5

Identifying and Analyzing Group Differences

Victor M. H. Borden

Many of the issues considered by institutional researchers involve the

classification of current and potential students, faculty, academic programs,

or higher education institutions into groups. Examples include identifying

potential student markets, predicting which students will most likely persist

in their studies, determining which students are most likely to benefit from

various support programs, and selecting peer institutions. Discriminant

analysis, logistic regression, and cluster analysis are among the most suitable

techniques for addressing these classification issues.

This chapter considers two sides of the "group differences and

classification" coin: analyzing differences among existing groups (e.g.,

students accepted for admission who choose to enroll at one's institution

versus those who choose to enroll elsewhere, retained versus non-retained

first-year students, etc.); and identifying groups within previously

undifferentiated populations (e.g., peer institutions, student market segments,

etc.).

Discriminant analysis and logistic regression consider the issue of how

a set of predictors can best distinguish among members of pre-existing groups.

For these methods, the dependent variable is a nominal categorization of

objects (group membership) that is known, a priori. The predictors can be

continuous or categorical (nominal) variables. Between the two techniques,

logistic regression is currently more popular because of its robustness and

superiority in handling categorical predictors. However, discriminant analysis

is better suited for grouping outcomes that have more than two unordered

values as, for example, in a retention analysis, if one wanted to distinguish

between students who returned for their sophomore year, students who

transferred to another institution, and students who are not attending college.

Cluster analysis refers to a broad variety of techniques for determining

if the objects of study (people, institutions, programs, etc.) can be grouped in

a meaningful way such that members of a group are relatively similar to each

other and relatively different from members of other groups. That is, clustering

techniques are used to define groups that do not exist, a priori. Cluster

analysis techniques are not based on parametric statistics, but rather on

numerical heuristics. As a result, they are less consistent and more sample-

specific than most parametric statistical techniques. They are also

computationally intensive and so have not been practical until relatively

recently. Some cluster analysis algorithms will tax even modern-day

computers.
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Grouping and classification analyses can be quite useful in institutional

research. Enrollment management has been the most fertile area for this

type of analysis, including identifying niche markets for specific types of

academic programs or support program development, analyzing admitted

students who enroll versus those who do not, predicting returning versus

non-returning students, graduating versus non-graduating students, those

likely to donate versus not donate and so on. These techniques can also be

applied to faculty salary and workload studies, staff vacancy issues, corporate

donations, and any other issue where the objective is to classify people or

other objects (e.g., programs, classes, facilities) for planning and evaluation

purposes.

Analyzing Differences among Existing Groups

The t-test is the first statistic one usually learns related to group

differences. For this statistic, group membership defines the independent

variable, which is then tested for its impact on a single continuous dependent

variable. For example, one may want to know whether studying or not studying

for an exam (the independent variable or treatment condition) results in

significantly different grades (the dependent variable or outcome). One initially

learns that a t-test is valid only in an experimental situation, where assignment

to the treatment condition is random. However, one soon learns that the

t-test is "robust" enough under violations of basic assumptions that it can be

used to test for differences among existing groups, such as between men

and women, or undergraduate and graduate students.

Does this mean that one can use a t-test to analyze differences between

retained and non-retained students across such factors as their college entry

exam scores or their average grades during their first year of college?

Conducting such tests could provide some useful information regarding how

retained and non-retained students differ. However, there is a fundamental

difference between examining group differences where the group characteristic

is considered the independent variable and where it is considered the

dependent variable. In the t-test design, group membership is the independent

variable and is seen as "causing" the differences in the dependent variables.

Obviously, this is not an appropriate characterization of the retention issue.

When thinking about analyzing group membership as an outcome or

dependent variable, one might first think about using linear regression, where

a set of predictors can be tested for their impact on a single outcome variable,

such as whether a student is retained or not retained. However, simple linear

(ordinary least squares, or OLS) regression requires the dependent variable

to have some characteristics that a group outcome violates. First, the

dependent variable in a linear OLS regression must have an unlimited range

but a group classification can take on only two discrete values, which we

usually designate as one or zero1. If one uses linear OLS regression to
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predict such a dichotomous outcome, one could get predicted values greater

than one or less then zero, which are impossible. Second, the coefficients in

a linear OLS regression are additive, meaning that it can be observed how

the impact of each predictor "adds to" the prediction of differences in the

outcome. However, if the effects expressed in coefficients to predict a group

outcome are added together, the resulting values can range continuously

from well below zero to well beyond one, making it difficult to interpret how

the predictors contribute to the outcome. Having a dichotomous outcome

violates several other important assumptions of linear OLS regression,

including that the variance of the outcome is constant across values of the

predictors (homoscedasticity), and that the differences between the predicted

and actual values of the outcome (i.e., the error term) are normally distributed.

Discriminant analysis and logistic regression are two regression

techniques that address these issues and thus allow for group membership

as a dependent variable. Before examining each specific method in some

detail, we first consider the common aims of these techniques and how they

apply to some typical institutional research issues.

The Common Aims of Discriminant Analysis and Logistic Regression

These two techniques address the same three basic questions:

1. To what extent do specific predictors contribute to determining

the group membership outcome?

2. What is the best combination of predictors to optimize predictions

of the group outcome?

3. How useful is that combination for classifying new cases?

The first two of these questions are the traditional linear OLS regression

questions, focusing on the contribution of each predictor (the beta coefficients)

and the strength of the overall prediction model (the F-ratio for the entire

equation and the model R-Square value), respectively. The third issue of

classification corresponds to the prediction capabilities of a linear OLS

regression model. However, the method by which prediction is characterized

differs substantially. Within linear OLS prediction, the differences between

predicted and actual values are characterized as a deviation score, which

then can be summarized through an overall error term. For discriminant

analysis and logistic regression, prediction can also be characterized according

to the percentage of cases that are correctly or incorrectly classified.

Both discriminant analysis and logistic regression use an outcome

transformation technique to get around the "linear OLS problem" when using

group outcomes. However, each of these techniques uses a different

transformation approach. The discriminant analysis workaround is to predict

a "discriminant function" that is, a linear combination of the predictors that

generates the largest mean differences between the groups. This outcome,
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typically characterized as "D," is a continuous variable for which the average

for members of one group is as far from the average for members of the other

group as the given set of predictors will allow. In logistic regression, the

transformed outcome used in the statistical technique is the natural log of the

quantity: the probability of belonging to one group divided by the probability of

belonging to the other group. This is called the log of the odds ratio, or the logit.

By using these outcome transformation techniques, discriminant

analysis and logistic regression provide a statistically valid way to assess

the impact of a set of predictors on a group membership outcome. However,

in doing so the predictor coefficients they yield and the overall model fit

statistics are not as easy to interpret as are linear OLS regression coefficients

and model statistics.

Another common feature of these two techniques is a requirement that

the grouping characteristic must be mutually exclusive (i.e., one group cannot

be a subset of another). In addition, and in common with linear OLS regression,

these techniques require that the predictors not be linearly dependent (i.e.,

math SAT score, verbal SAT score and Total SAT score can not be used as

predictors in the same model because Total SAT score is a linear combination

of math and verbal).

As with other regression techniques, both discriminant analysis and

logistic regression allow the predictors to be entered into the model all at the

same time or in one of two stepwise fashions: forward (starting with the

strongest predictor, adding the next strongest and so on) or backward (starting

with all predictors, removing the weakest predictor, removing the second

weakest predictor and so on). Several different criteria are available for these

stepwise methods to determine which variables to enter or remove, and to

determine when to stop entering or removing variables. Version 12.0 of the

SPSS® statistical software package, which will be used in the examples

reviewed in this chapter, includes simultaneous predictor entry for both logistic

regression and discriminant analysis. For stepwise entry, SPSS® 12.0 offers

three different criteria each for forward and backward entry of predictors into

a logistic regression and five different criteria, but for only forward entry, for

discriminant analysis.

Typical Institutional Research Questions Addressed by These

Techniques

The discussion to this point referred several times to admissions yield

and retention as two common institutional research questions that can be

explored with these techniques. Also mentioned in the introduction is an

issue in which university development staff would be quite interested: what

predicts alumni donation behavior (i.e., which alumni will and will not donate).

Another common institutional research issue that can be addressed

through these techniques is participation in academic support or student life

programs. For example, these methods can be used to determine the
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differences between students who take advantage of supplemental instruction

programs versus those who do not. Or, one can use these techniques to

determine which students are most likely to study abroad, participate in an

internship program, or seek help from a career counseling center.

Participation questions are interesting in and of themselves, and also

as the "self-selection" component in a multi-stage analysis of intervention

impact. That is, if one can predict participation in a program, then one can

control for self-selection when assessing the impact of that program, by

using the prediction of participation as one of the predictors in the impact

assessment2.

In addition to student behavior, these techniques can be used to explore

differences in faculty behavior (e.g., retention, obtaining tenure, receiving

research grants, publishing, serving on university committees, etc.) and staff

behavior (retention, benefit package choices, participating in training and

development, etc.).

Discriminant analysis and logistic regression can also be used to explore

differences between groups of classes, departments, facilities, financial aid

packages, institutions, states, and so on. Table 1 provides examples of the

variety of research questions that can be addressed for various types of

entities within higher education.

Discriminant Analysis

Discriminant analysis follows quite closely the linear OLS regression

framework. The technique determines the linear combination of predictor

variables that accounts for the most variation in the group membership

outcome. As with linear OLS regression, the results provide statistics related

to the overall fit of the model and as to which of the individual variables contribute

significantly to the overall model.

The basic equation for discriminant analysis, called the canonical

discriminant function, is shown in equation (5.1). Dis the discriminant function

score for a given case (person or object), Sis the discriminant coefficient for

the ith predictor variable, and Xas the value of the ith predictor variable for that

case.

D = B0+B1X,+B2X2+...+BpXp [5.1]

Discriminant analysis requires two or more groups, at least two cases

(observations) per group, and a maximum of n-2 predictor variables, although

the power of the technique is greater if there are many more cases than

predictor variables. Technically, the predictor variables should be on an interval

or ratio scale. However, just like with linear OLS regression, the technique is

robust enough to handle dichotomous (dummy) predictors and, some would

argue, scale variables comprised of multiple ordinal variables (e.g., a

satisfaction measure that is derived from the sum of Likert-scale items, as
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Table 1

Examples of Research Questions about a Variety of Entities That

Can be Addressed by Discriminant Analysis and Logistic Regression

Entity

Students

Faculty

Staff

Classes

Academic Departments

Facilities

Financial Aid Packages

Budgets

Feeder High Schools

Higher Education

Institutions

States

Research Questions

What factors determine whether students enroll,

persist, participate in support programs, engage in

enriched learning opportunities, etc?

What factors are associated with faculty being

retained, attaining tenure, obtaining research grants,

teaching online courses, etc?

What determines whether staff members are

retained, seek training opportunities, choose

specific benefit options, etc?

What factors determine whether a class is

sufficiently subscribed; scheduled in the day or

evening; face-to-face or online; on-campus or off-

campus?

What predicts whether departments adopt

assessment programs?

How do student profiles differ between specific

departments?

How do older and newer facilities differ in their costs

of operation?

What kinds of students obtain primarily merit versus

need aid?

How do expenditure patterns differ in academic

versus administrative unit budgets?

How does the student profile differ for students who

originate from high schools in the immediate region

versus those from other parts of the state or country?

How do public and private institutions differ in the

diversity of their students (race, age, course load,

etc.)

How do high tuition/high aid states differ from low

tuition/low aid states in terms of student access and

success?
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long as the scale has high internal reliability). As mentioned earlier, no

predictor variable can be a linear combination of other predictor variables.

Discriminant analysis also shares with linear OLS regression the

assumption of homogeneity of variance, which requires that the variance-

covariance matrices for the different groups must be approximately equal.

However, several adjustment formulas have been developed to accommodate

situations where this assumption is violated. Finally, as with linear OLS

regression, the observations must be drawn from a population with a

multivariate normal distribution on the predictor variables.

Table 2

Predictor Variables Considered in the Retention Example Used

for Discriminant and Logistic Regression Analyses

Code Name

SEMGPA

CRSLOAD

FEMALE

AGE

SATACT

HSPCT

CLPREP

CNDADM

Description

Fall Semester Grade-Point

Average

Fall Semester Credit Load

Gender

Student age at entry

Total SAT score, or ACT total

converted to SAT scale

Percentile rank in high school

Number of college preparatory

units completed in high school

Whether the student was

admitted conditionally or

unconditionally

Values

Ranges from 0 to 4; mean=2.57,

SD=1.09; median=2.85

Ranges from 1 to 18; mean=12.3,

SD=3.1; median=13

Dummy variable where 0=male

(44%) and 1=female (56%)

Ranges from 16 to 56; mean=20.1,

SD=5.4,Median=18

Ranges from 480 to 1470;

mean=991, SD=147; median=990

Ranges from 0 (lowest rank) to

99.7 (highest rank); mean=59.9,

SD=22.1,Median=61

Ranges from 3 to 51; mean=33.8,

SD=6.1,Median=34

Dummy variable where 0=admitted

unconditionally (48%) and

1=admitted conditionally (52%)

The various components of output produced by a discriminant analysis

are reviewed next using a concrete example: predicting retention to the second

year of first-time, first-year students. Table 2 summarizes the predictors

considered in this analysis.

The specific output derived from a discriminant analysis depends on

the various options that are chosen. For example, one can request univariate

descriptive statistics on the predictors and univariate ANOVAs related to how

138



each predictor relates to the group outcome, as well as the variance-covariance

matrix among the predictors for all subjects or for each group separately.

None of these are included in the current example.

Table 3 shows the case processing summary from the discriminant

analysis, showing that 1,538 of the 2,419 observations in the data set had

non-missing values for all variables included in the analysis. Table 4 shows

the results for Box's test of equality of covariance matrices, which should be

Table 3

Discriminant Analysis Case Processing Summary

Unweighted Cases

Valid

Excluded Missing or out-of-range group codes

At least one missing discriminating

variable

Both missing or out-of-range group

codes and at least one missing

discriminating variable

Total

Total

N

1538

0

881

0

881

2419

Percent

63.6

0

36.4

.0

36.4

100.0

run to determine if the homogeneity

of covariance assumption has

been met. In this case, the very

small p-level indicates that this

assumption has not been met,

which should be noted as a caveat

when interpreting the remaining

output.

The first substantive results

for the discriminant analysis are

two small tables that provide

information relating to the overall

performance of the tested model.

Table 5 includes both the

eigenvalue/canonical correlation

table and the Wilk's Lambda table.

The current example uses as an

outcome the dichotomous (two-

group) distinction: retained or not

retained. Discriminant analysis

can also be used to test

Table 4

Results from Box's Test of

Equality of Covariance for the

Discriminant Analysis

retn

0

1

Pooled within-groups

Rank

8

8

8

Log

Determinant

17.774

17.149

17.672

The ranks and natural logarithms of

determinants printed are those of the group

covariance matrices.

Box's M

F Approx.

df1

df2

Sig.

482.229

13.310

36

3786143.240

.000

Tests null hypothesis of equal population

covariance matrices.
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polychotomous (multi-group) outcomes. However, when there are more than

two groups, there is more than one resulting function (i.e. more than one

solution). Generally, if the outcome has k groups, the analysis produces k-

1 functions, where each function is orthogonal (uncorrelated) to the others.

Because the current example has a dichotomous outcome, Table 4 shows a

single function that accounts for 100% of the model's total variation (as reflected

in the third and fourth columns of the top part of Table 5).

Table 5

Overall Model Statistics for the Discriminant Analysis

Function

1

Eigenvalue

.309(a)

% of Variance

100.0

Cumulative %

100.0

Canonical

Correlation

.486

Test of Function(s)

1

Wilks1 Lambda

.764

Chi-square

412.553

df

8

Sig.

.000

The only informative information left in the top portion of Table 5 is the

eigenvalue and canonical correlation of the single discriminant function

produced by the model. The eigenvalue is the ratio of the sum of squares

between groups divided by the sum of squares within groups (i.e., analogous

to the treatment effect in a one factor ANOVA). The final parameters of a

discriminant function are those that maximize the eigenvalue. The canonical

correlation is a version of the standard Pearson product-moment correlation

coefficient, where the values being correlated are subjects' actual group

membership and the predicted D-values (i.e., multiplying each variable by its

coefficient and summing across variables). Since this is a correlation between

a dichotomous and continuous variable, it is technically a point-biserial

correlation, which is restricted in range to values slightly below 1.00 (depending

on the sample size and distribution of data). With this limitation in mind, the

canonical correlation for a discriminant function is much like the multiple

correlation (R) in a linear OLS regression, except it is slightly attenuated.

Also, like the multiple correlation, its squared value can be taken as a measure

of the overall fit of the model (i.e., the percent of total variation in the outcome

that is accounted for by the predictors).

But discriminant analysis does not typically use the squared canonical

correlation to express the overall model fit. Rather, it employs Wilk's

Lambda—a common multivariate linear model statistic that expresses the

unaccounted for variation in the model. Wilk's Lambda is used to test the

null hypothesis that the populations from which the samples came had identical

average D values. Thus, if Wilk's Lambda is 1.0, then the model suggests
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that there is no difference between groups on the composite predictors. In

this example, Wilk's Lambda is 0.726, which is significantly different from

1.0 and shows that the model does not account for 72.6% of the variation in

the group outcome. The complement to Wilk's Lambda (1 - .726, or .274 in

this case), is the equivalent to the R2 of linear OLS regression and is also

equal to the square of the canonical correlation.

The next three components of the discriminant analysis routine are

here combined into the columns of Table 6. The first column of numbers

represents the standardized predictor coefficients. That is, these coefficients

would be applied to the values of the predictor variables that have been

transformed to z-scores to yield the overall discriminant function value. The

standardized coefficients, like the beta weights of a linear OLS regression,

show the relative contribution of each variable to the overall prediction model,

taking into account differences in scale. This is useful for model building, but

less useful for prediction. The unstandardized coefficients provide more

practical information as they express how the overall discriminant function

changes for each unit change in the raw (untransformed) predictor variable.

In this example, a one point grade increase (1.00) in semester GPA would

Table 6

Discriminant Analysis Predictor Coefficients (Standardized and

Unstandardized) and Structure Matrix

SEMGPA

CRSLOAD

FEMALE

AGE

SATACT

HSPCT

CLPREP

CNDADM

(Constant)

Standardized

Coefficients

.948

.260

.099

.069

-.031

.027

.013

-.054

Unstandardized

Coefficients

1.042

.116

.200

.047

.000

.001

.003

-.109

-5.062

Structure Matrix

SEMGPA

HSPCT

CNDADM

CRSLOAD

FEMALE

SATACT

CLPREP

AGE

.958

.271

-.249

.219

.149

.134

.101

.028

result in an increase in 1.042 of the overall discriminant function value.

Unfortunately, the overall unstandardized discriminant function value does

not have direct meaning and thus unstandardized coefficients are often ignored

in discriminant analysis.
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The final two columns of Table 6 show the structure matrix for the

discriminant function. The structure matrix is comprised of the correlations

(Pearson product-moment) between each predictor and the overall discriminant

function value (D). The listing of the predictor variables in the structure matrix

is sorted so that the predictor with the highest correlation (absolute value) is

at the top of the list and the predictor with the lowest correlation is at the

bottom of the list. For the standardized and unstandardized coefficient tables,

the predictors are ordered as indicated when entered into the model.

In addition to the overall and coefficient statistics, discriminant analysis

models can be judged according to their ability to accurately classify

observations. This can be done on the sample from which the model was

estimated or, even better, against a second sample of data. If one has enough

cases, it is usually recommended that the sample be split so that the model

can be developed using one portion of the sample and then tested for accuracy

using the second portion of the sample.

Table 7 shows the results of classification for the current model on both

the cases upon which the model was built, as well as the "Cases Not Selected,"

which were set aside for validation purposes. The results reveal that the

model correctly classified 74.2% of the cases included in the analysis (80%

of retained students and 62% of non-retained students classified correctly).

The classification accuracy was similar for the non-selected cases: 72.8%

Table 7

Classification Results from Discriminant Analysis

Cases

Selected

Cases Not

Selected

Original

Original

Count

%

Count

%

retn

0

1

0

1

0

1

0

1

Predicted Group

Membership

0

154

108

61.8

20.0

174

113

65.7

23.3

1

95

431

38.2

80.0

91

372

34.3

76.7

Total

249

539

100.0

100.0

265

485

100.0

100.0

a 74.2% of selected original grouped cases correctly classified,

b 72.8% of unselected original grouped cases correctly classified.
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overall including 77% accuracy among retained students and 66% accuracy

among non-retained students. Thus the current model, although relatively

weak in its predictive capacity, is reliable (i.e., consistent) across samples.

Discriminant Analysis References

The following references are recommended for exploring further details

on the method of discriminant analysis and its application to institutional

research:

Institutional Research Applications

Krotseng, M. V. (1992). Predicting persistence from the student

adaptation to college questionnaire: Early warning or siren song? Research

in Higher Education, 33,99-111.

Riggs, M., Downey, R,. Mclntyre, P., & Hoyt, D. (1986). Using

discriminant analysis to predict faculty rank. Research in Higher Education,

25,365-376.

Urban, R. F. (1992). Increasing admitted student yield using a political

targeting model and discriminant analysis: An Institutional Research-

Admissions partnership. AIR Professional File, No. 45. Tallahassee, FL:

General References

Dillon, W. and Goldstein, M. (1984), Multivariate analysis: Methods and

applications, New York: Wiley

Hand, D. J. (1981). Discrimination and classification, New York: Wiley.

Huberty, C.J. (1984). Issues in the use and interpretation of discriminant

analysis. Psychological Bulletin, 95,156-171.

Klecka, W. R. (1980). Discriminant analysis. Quantitative Applications

in the Social Sciences, No 19. Beverly Hills, CA: Sage.

Lachenbruch, P. A. (1975). Discriminant analysis. New York: Hafner

Press.

Logistic Regression

Like discriminant analysis, logistic regression uses the same general

framework as linear OLS regression, wherein coefficients are estimated to

provide the linear combination of predictors that best predicts the group

outcome. Logistic regression departs from linear OLS regression in two

fundamental ways. First, rather than using the minimization of the error term

as the criteria for determining the best combination of predictors (i.e.,

minimizing the squared distance between the observed and predicted values),

logistic regression uses the maximum likelihood (MLE) approach to estimation,

where coefficients are chosen that produce the greatest probability of obtaining

that particular set of data given the fitted regression coefficients.

But the more important difference between linear OLS regression and

logistic regression is the outcome transformation that is employed to get
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around the problematic distribution properties of a dichotomous outcome.

As mentioned earlier, logistic regression transforms the outcome into the log

of the odds ratio or logit, which is the natural log of the quantity: the probability

of belonging to one group divided by the probability of belonging to the other

group. For example, if P represents the probability of being retained from the

first to the second year of college (i.e., the first-year retention rate), and 1 -P

represents the attrition rate (probability of not being retained), then the logit

is represented by equation 5.2

logit(P) = log(odds ratio) = In -—- [5<2]

The logistic regression equation relates this value to the predictors in

the same way that the OLS regression relates a raw outcome value to a set

of predictors, as shown in equation 5.3

logit (P) a b^ b2X2 5K bpXp [5.3]

where a is the y-intercept and the b1 through bp are the regression coefficients.

Just as in linear OLS regression, the b coefficients represent the unit change

in the outcome (in this case logit(P)) for each unit change in the predictor.

Because it is difficult to directly understand unit changes in the log of

the odds ratio, we usually relate our results to the exponent or anti-natural

log of the coefficient (i.e., Exp(b) or eb). This is more interpretable, since it

reflects how a unit change in the predictor influences the odds ratio rather

than the log of the odds ratio. Put more simply, the exponent of the coefficient

for a given predictor reveals how many times more likely it is to obtain the

outcome (e.g., to be retained) for each unit change in the predictor. For example,

consider predicting student retention (one for retained, zero for not retained)

from gender (where one represents female and zero male) and obtaining a b

coefficient of 0.223. The exponent of this coefficient, exp(b)=1.25 tells you that

female students are 1.25 times more likely to be retained than males.

The coefficients derived from a logistic regression, like their linear OLS

counterparts, are error-laden estimates of the "true" population coefficient.

As such, they are subject to significance tests to determine if they are

statistically significant, that is, different enough from zero to be considered a

real (population) effect. The Wald statistic is used in logistic regression to

express the significance level of each coefficient. The Wald statistic applies

equally to the odds ratio (the exponent of b) as it does to the coefficient itself

(the log of the odds ratio).3

We have focused so far on the estimates of the coefficients. With all

regression models, however, we first consider the overall significance of the

model. With the linear OLS model, we look at the overall F-ratio associated

with the model and then the R2 to determine the strength of the overall model
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(percentage of total variance accounted for in the outcome). With the logistic

regression equation, the overall significance is determined through a model

chi-square statistic derived from the likelihood of observing the obtained data

given that the model specified is accurate. Specifically, the model chi-square

is related to negative two times the log of this likelihood, sometimes referred

to as -2LL. The chi-square compares -2LL for the model against

-2LL for the null hypothesis model (where the coefficients have no effect).

The fact that the ratio of -2LL for various models has a chi-square distribution

allows us to compare different models, which is very useful for stepwise

analyses.

One can also derive measures that are similar to the R2 of OLS

regression. For example, SPSS provides two such measures, the Cox &

Snell R2 and the Nagelkerke R2. There are several other such Pseudo-R2

measures, which can vary markedly for the same model. Because of their

variability, and the fact that none parallel precisely the R2 of linear OLS

regression, they should be interpreted with great caution.

Tables 8 through 12 show the results of a logistic regression for our

retention example. The first three tables (8, 9, and 10) provide information

prior to the testing of the logistic regression model. The case processing

summary of Table 8

Table 8 indicates the number of

Logistic Regression Case cases that have valid

Processing Summary values for all variables

(outcome and

predictors) versus

those that have at least

one missing value.

Table 9 represents the

classification table

prior to the analysis,

which shows the

actual number and

percentage of cases

that fall into the two

outcome categories,

but does not yet have

the predicted

outcomes. Table 10

lists the predictor

variables that will be

considered in the

model and indicates

which among them are

significantly associated

Unweighted Cases(a)

Selected Cases Included in Analysis

Missing Cases

Total

Unselected Cases

Total

N

1538

881

2419

0

2419

Percent

63.6

36.4

100.0

.0

100.0

Table 9

Pre-Analysis Logistic Regression

Classification Table

Observed

StepO Retn 0

1

Overall Percentage

Predicted

retn

0

0

0

1

514

1024

Percentage

Correct

.0

100.0

66.6

a Constant is included in the model,

b The cut value is .500
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Table 10

Pre-Analysis Logistic Regression Model and Variable Statistics

Variables not in the Equation

Step 0 Constant

B

.689

S.E.

.054

Wald

162.577

df

1

Sig.

.000

Exp(B)

1.992

Variables not in the Equation

StepO Variables semgpa

crsload

female

age

satact

hspct

clprep

cond

Overall Statistics

Score

339.932

22.416

10.542

.369

8.437

34.212

4.841

28.830

363.089

df

1

1

1

1

1

1

1

1

8

Sig.

.000

.000

.001

.543

.004

.000

.028

.000

.000

with the outcome, not yet taking into account the other predictors. Note that

in our case, age is the only prospective predictor that is not related to the

outcome prior to developing the model.

The overall model statistics and logit coefficient statistics are presented

in Table 11. SPSS provides the -2LL value as well as the two pseudo-R2

statistics described above. It is interesting to note that the R2 obtained through

the Discriminant Analysis (1-Wilk's Lambda) or .236 is between the two

values provided in the top portion of Table 11, although closer to the Cox &

Snell value of .219.

The coefficient information provided in the bottom portion of Table 11

shows results very similar to our discriminant analysis on these same data.

Semester GPA and Course Load are the strongest predictors of retention,

followed by gender, age, and the three academic background indicators. But

unlike the discriminant analysis, the logistic regression shows us that only

the semester GPA and course load coefficients are statistically different from

zero (at the .05 level). The exponent of the semester GPA predictor suggests

that a one point (i.e., a full grade) difference in GPA results in a student being

nearly three times more likely to be retained.

The last component of the logistic regression output, the final

classification table shown in Table 12, shows how the model accurately

classifies just under one half of the students who were not retained and just
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Table 11

Logistic Regression Model and Variable Results

Step

1

-2 Log

likelihood

1579.583(a)

Cox & Snell

R Square

.219

Nagelkerke

R Square

.304

a Estimation terminated at iteration number 5 because

parameter estimates changed by less than .001.

Variables in the Equation

Step 1(a) semgpa

crsload

female

age

satact

hspct

clprep

cond

Constant

B

1.068

.132

.245

.070

.000

.002

.003

-.125

-5.168

S.E.

-.070

.028

.132

.053

.000

.004

.014

.154

1.355

Wald

233.412

22.453

3.458

1.769

.038

.379

.061

.659

14.547

df

1

1

1

1

1

1

1

1

1

Sig.

.000

.000

.063

.183

.846

.538

.805

.417

.000

Exp(B)

2.909

1.142

1.277

1.073

1.000

1.002

1.003

.882

.006

a Variable(s) entered on step 1: semgpa, crsload, female, age, satact, hspct, clprep, cond.

Table 12

Logistic Regression Final

Classification Table

Observed

Step 1 Retn 0

1

Overall Percentage

Predicted

retn

0

245

86

1

269

938

Percentage

Correct

47.7

91.6

76.9

a The cut value is .500

over 90 percent of the students who

were retained. Compared to the

classification made by the

discriminant model (shown in Table

7), the logistic model was

considerably more accurate for the

higher probability event (being

retained), but considerably less

accurate for the low probability

event.

Logistic Regression References
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Choosing between Discriminant Analysis and Logistic Regression

As mentioned above, logistic regression is now a more popular choice

than discriminant analysis for analyzing the impact of predictors on a

dichotomous outcome. Logistic regression is generally a more flexible method

that better accommodates a broader range of predictors. In both cases, the

coefficients are not as easy to interpret as in linear OLS regression, but the

classification tables provide a fairly intuitive mechanism for demonstrating

the accuracy of the resulting models.

It was also mentioned that discriminant analysis can handle

polychotomous outcomes (i.e., more than two groups) while logistic regression

cannot. However, logistic regression is part of a family of analyses that can
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be used for polychotomous outcomes (multinomial logistic regression) as

well as rank order outcomes (ordinal logistic regression). If one is dealing

exclusively with continuous predictors, either method works equally well and

both may be used to examine the consistency of results. More generally,

though, logistic regression is preferred.

General References

Shott, S. (1991). Logistic regression and discriminant analysis. Journal

of the American Veterinary Medical Association, 198,1902-1905.

Wright, R.E. (1995). Logistic regression, in L.G. Grimm & P.R. Yarnold

(Eds.), Reading and understanding multivariate statistics. Washington, DC:

American Psychological Association.

Identifying Groups within Previously Undifferentiated Populations

Cluster analysis refers to any of a wide variety of numerical procedures

used to create a classification scheme, that is, to place objects into identifiable

groups. Conceptually, cluster analysis is relatively easy to understand and

well suited to a variety of segmentation activities. However, it involves the

use of heuristic algorithms that are not generally supported by extensive

statistical reasoning. In effect, cluster analysis is an entirely data driven

exercise which can yield inconsistent results across samples and cannot be

used to infer to populations with any degree of known certainty. Cluster analysis

is considered to be among the class of techniques now referred to as "data

mining."

Intuitively, clusters can be thought of as a set of objects or points that

are relatively close to each other and relatively far from points in other clusters.

One of the most common applications of cluster analysis in higher education

is the determination of peer institutions. That is, can colleges and universities

be placed into groups such that members of a specific group are relatively

similar to each other and relatively different from members of other groups?

The Carnegie Classification system can be viewed as a set of institutional

clusters, which begs the questions: by what criteria are the institutions

considered similar to or different from each other? In the case of the Carnegie

Classification (at least the system in effect prior to the 2005 revision), institutions

are first distinguished according to their highest degree level. Within each

degree level, different characteristics are used to further distinguish institutions.

Traditional cluster analysis methods do not allow one to use different

characteristics at different levels of the analysis, although the decision tree

method reviewed in the final section of this chapter does accommodate such

distinctions.

Traditional cluster analysis requires the simultaneous use of a single

set of variables for grouping all observations. These variables are used to

construct some measure of similarity or distance, which is then processed

through one of several possible clustering algorithms.
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Selecting Variables

The most popular forms of cluster analysis are based on measures of

"similarity" among objects according to some combination of attributes. For

example, higher education institutions are typically classified according to

their size, the level and types of degrees conferred, student enrollment

characteristics (such as percent of full-time students, or of women or minority

students), and financial characteristics (such as expenditures for instruction

or research activities). One could also consider classifying students at an

institution according to such characteristics as personal or family

demographics, levels of academic preparation, attitudes and interests,

expectations and goals, program of study, college performance, etc.

The choice of variables is one of the most critical steps in the cluster

analysis process that should be guided by an explicit theory or at least solid

reasoning. For example, the specification of peer institutions will vary widely

depending on what characteristics are considered. It is imperative that the

researcher sufficiently describes the rationale for selecting input

characteristics, as well as the limitations inherent in any specific set.

Choosing a Distance/Similarity Measure

The variables selected for the analysis are used to derive a single measure

of similarity among all of the cases (e.g., among each pair of students or

each pair of institutions). The derived measure can be either one of distance

(geometric distance between points in a multi-dimensional space) or similarity

(association or correlation coefficients).

The type of variables chosen for analysis constrains the choice of

similarity measure. For continuous variables, such as age, credit load, grade-

point average, and SAT scores, one can use either a distance measure or a

measure of association. For nominal variables such as gender, marital status,

and race, one must use a similarity measure based on association coefficients

("matching-type" measures).

Distance Measures

The most popular distance measure used in cluster analysis, Euclidean

distance, is the square root of the sum of the squared differences between

corresponding measures. For example, if institutions are being classified

according to enrollment, percent of undergraduate students, and graduation

rate, then the distance measure is the square root of the difference between

enrollments squared plus the difference in percent of undergraduates squared

plus the difference between graduation rates squared.

Euclidean distance is one case of a more general formula for distances

between points defined by multiple continuous variables, called the Minkowski

metric and shown in equation (5.4).
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[5.4]

For Euclidean distance, r =2. If r = 1, the distance measure is referred to as

a city-block metric.

Another commonly used distance measure, Mahalanobis D2, takes

into account correlations among the predictors, as shown in equation (5.5),

where (X-X) is the vector of differences between corresponding scores and S

is the variance-covariance matrix among measures.

D2=(XI-XJ))S-1(XI-XJ) [5.5]

Because cluster analysis is based entirely on distances among objects

according to the composite of criterion variables, one must be careful about

the implications of using standardized versus unstandardized measures in

computing these distances. That is, cluster analysis solutions will differ

substantially when using unstandardized measures as compared to when

using standardized versions of the same measures.

Matchinq-Type Measures (Association Coefficients)

The distance measures described to this point can only be used for

continuous measures. In order to use nominal criteria, such as sector (public,

private-non-profit, or proprietary) when clustering institutions, or gender and

race/ethnicity when clustering students, a "matching-type" similarity measure,

based on an association index, must be used.

For example, to generate a matching-type similarity measure for

ethnicity, one would transform the single variable with, perhaps, six values

(White, African American, Asian American, Hispanic, Native American, Non-

Resident Alien, and Other) into five or six binary variables: White (0,1), African

American (0,1), etc. One can either use one less variable than the number of

values of the original variable, with the all zero's value representing one of the

six values, or as many binary variables as valid values, saving the all zero's

value for when race/ethnicity

is missing.

To extend the example

to multiple nominal criteria,

consider comparing two

people across a set of traits

(e.g., gender, race/ethnicity,

class level, major), where

the numbers in each cell of

Person B

Has Trait

Does not have trait

Person A

Has Trait

A

C

Does not

have trait

b

d
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the following table represents the frequency of matches and mismatches on

those traits.

For our example, assuming no missing values, there would be one

variable representing gender, five variables for our race/ethnicity measure,

and perhaps six variables to represent clusters of majors. For students who

are of the same gender (female), race (Hispanic), and major cluster (social

science) a=3, b=0, c=0, and d=10. It is important to note that this last

component, d=10, reflects that two students who are identical on such criteria

have more cases where they are common in terms of not meeting the criteria

(they are both not male, not White, not African American, not Business majors,

not Education majors, etc.) than where they meet the same criteria.

The numbers in this matching association example can be put together

in various ways to derive a similarity coefficient. The "default" association

would be calculated as (a+d)/(a+b+c+d). However, we may exclude the d

value completely, and only consider when the pair have a trait in common

relative to cases where one has a trait that the other doesn't (i.e., a/(a+b+c)).

Alternatively, one could give double weight to the common traits relative to

the rest (e.g., 2a/(2a+b+c+d)). As a heuristic algorithmic method, cluster

analysis allows the user to choose among such measures according to which

seem most logical for a given research question and data set.

Correlation Coefficients

Various forms of correlation coefficients, such as the Pearson product-

moment correlation, or the Spearman rank-order coefficient, can also be used

as a basis for determining similarity or difference among objects that are

being considered for clustering. Traditionally, one uses correlation coefficients

to examine the association between two measures across subjects (e.g.,

SAT scores and first-year GPA). In this case, however, the coefficient is

calculated across the measures (criteria) and between two subjects.

Generating a Proximity Matrix

After selecting the variables and distance/similarity measure, the next

step is to produce a matrix, variously called the distance or proximity matrix,

which contains the composite distance/similarity measure for each and every

pair-wise combination of objects. The proximity matrix contains a row and

column for each object (person or thing) and the cells represent the distance

or similarity measure between each pair. Thus the distance matrix is symmetric

and has a diagonal of zeroes for distance matrices, or ones for similarity

measures.

For one common institutional research clustering application—selecting

peer institutions—this is the final step in the analysis. The row or column

containing the target institution can be isolated and examined to see which

other institutions are "closest" or "most similar." An example of this technique

is provided in the following section.
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Choosing a Clustering Technique

If finding the "nearest neighbors" for a single institution is not the final

goal, one would then proceed to the final stage of a cluster analysis, wherein

an algorithm is chosen for determining cluster membership. There are two

general classes of algorithms—hierarchical and partitioning—and several

methods within each class.

Hierarchical Algorithms

Hierarchical algorithms operate in one of two directions. Agglomerative

methods start with each object in its own cluster and then put closest items

and clusters together into larger groupings until some termination criteria is

reached. Divisive algorithms start with all points together in a single cluster

and then partition the objects into smaller groups by splitting off items and

small clusters.

Agglomerative methods differ according to the criteria by which distance

between clusters is determined. That is, once there is more than one object

in a cluster, one must decide how to determine the distance between that

cluster and another object (unclustered point) or cluster. The Single linkage

(or Nearest Neighbor) technique calculates distance according to the closest

points in two clusters or the distance between an unclustered object and the

closest point in the cluster. Complete linkage (Furthest Neighbor) calculates

distance according to the largest distance among clusters (points farthest away

from each other). Average linkage, as its name implies, bases distance on the

average of all distances between points when evaluating point-cluster or cluster-

cluster distances. Ward's Error Sum of Squares is another popular method for

calculating distances within a hierarchical agglomerative cluster analysis. It

uses an objective function that minimizes the sum of squared deviations between

the points and the cluster mean. This method provides some basis (i.e., the

objective function) for judging when to stop forming clusters.

Divisive hierarchical clustering methods, which start with one group of

the whole and then partition objects into smaller clusters, require the researcher

to choose a technique for determining which points or clusters to detach

from the larger group. The Splinter-Average Distance technique first removes

the object that has the greatest average distance from all other objects.

Each object is tested to see if it is closer on average to the original group or

the splinter group. Once all objects are assigned to one of the two groups,

the process is repeated on each group.

Decision tree clustering methods are also considered to be within the

hierarchical divisive camp. However, decision trees depart from the methods

so far described in several fundamental ways and will be considered separately.

Partitioning Algorithms

Partitioning algorithms start with an a priori determination of the number

of clusters. Criteria are then selected for optimizing distances among clusters.
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Although partitioning algorithms require prior statement of the number of final

clusters, some methods allow cluster numbers to vary during the course of

analysis. The methods of partitioning generally differ with regard to how the

clusters are initially determined, how objects are assigned to clusters, and

how objects are reallocated to clusters.

K-Means clustering is the most popular partitioning algorithm. The

researcher specifies the number of clusters (K) and has the option of specifying

the initial location of each cluster center (according to a composite of the

criterion variables). If the researcher does not specify the initial cluster centers,

the algorithm chooses locations that are distributed evenly throughout the

data space. The algorithm then adjusts the cluster locations as to minimize

the Euclidean distance between the objects and cluster means.

Trace-based methods are a class of partitioning methods that either

maximize between-group dispersion or minimize within-group dispersion using

various combinations of the trace and determinants of the matrices

representing each of these components.

Cluster Analysis Examples

As mentioned above, one of the most common institutional research

applications of cluster analytic techniques—identifying peer institutions—

typically focuses on the row or column in a proximity matrix pertaining to the

target institution. As such, the analysis never actually employs a clustering

algorithm. For our current example we will first run a set of institutions through

a clustering algorithm and then examine the use of the proximity matrix to

find a target institution's "nearest neighbors," comparing the results of the
two processes.

The data for this example come from the IPEDS data sets collected

annually by the National Center for Education Statistics. Table 13 lists the

data elements employed in this analysis. This analysis will only consider

the 144 Doctoral Extensive universities (according to the 2000 Carnegie

Classification system) that have complete data on all these variables.

For our initial analysis, we will employ a hierarchical, agglomerative

algorithm on the standardized (Z-score) values of the criteria, using a Euclidean

distance measure and the between-groups (average-linkage) method for

determining distance between points and cluster. We will also request

solutions that produce five through eight clusters.

The output of a cluster analysis procedure tends to be very voluminous

and not very informative. The Agglomeration Schedule, for example, lists the

cluster numbers being combined at each stage, although it is unknown which

points are in which clusters. The Proximity Matrix can also be requested, but

the printed form is generally burdensome compared to the saved data set

form described below. A Dendrogram or Icicle Plot can be requested, showing

which points are being put together or separated at each stage. With more

than twenty or thirty cases, the output is excessive. The key result for the
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Table 13

Variables from NCES IPEDS Data Sets Used for Peer Institution

Identification and Clustering Example

Variable

totenr

ftpct

wompct

ugpct

minpct

pbus

peduc

pengin

phealth

resexp

totexp

pontrack

ptenure

satact

price

Label

Enrollment - Total Headcount

Enrollment - Percent Full-Time

Enrollment - Percent Women

Enrollment - Percent Undergraduate

Enrollment - Percent Minority

Degrees - Percent Business, Management, Marketing and Related

Support Services

Degrees - Percent Education

Degrees - Percent Engineering

Degrees - Percent Health Professions and Related Clinical

Sciences

Expenditures - Research

Expenditures - Total Operating

Faculty - Percent Tenured or On-Track

Faculty - Percent of On-Track who are Tenured

Average SAT or ACT Equivalent

Total Price (In-State, On-Campus)

cluster analysis is the assigned cluster membership, which can be saved

onto the data set for each requested solution.

Another important result for our efforts to identify "Nearest Neighbors"

is the proximity matrix. Unfortunately, when using the graphic user interface

dialogues in SPSS, the proximity matrix is created, used, and deleted, "behind

the scenes." The only way to capture the proximity matrix is through the use

of syntax. Specifically, the following syntax produces the proximity matrix

for our example:

Proximities totenr ftpct wompct ugpct minpct pbus

peduc pengin phealth resexp totexp pontrack ptenure

satact price

/MATRIX OUT ('C:\temp\prox.sav')

/VIEW= CASE

/MEASURE=SEUCLID

/ID=INSTNM

/STANDARDIZE= VARIABLE Z

/PRINT NONE.
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The proximity matrix created by this syntax would be saved into an SPSS

dataset as "c:\temp\prox.sav," with a row and a column for each of the 144

institutions in this analysis.

Table 14 shows the number of institutions placed into each cluster in

the five, six, seven and eight cluster solutions produced by the hierarchical

agglomerative analysis. The results show that the vast majority of institutions

were placed in the first cluster, with one or two institutions split off to form

most of the remaining clusters, until the eight cluster solution, when a group

Table 14

Cluster Frequencies for the 5

through 8 Cluster Solutions

Cluster

1

2

3

4

5

6

7

8

5 Cluster

Solution

138

1

2

1

2

6 Cluster

Solution

137

1

2

1

2

6

7 Cluster

Solution

137

1

1

1

1

7

1

8 Cluster

Solution

107

1

30

1

1

8

2

1

of thirty forms one of the other

clusters.

As an alternative, the Two-

Step" cluster method within

SPSS can be used to first identify

the optimal number of clusters

before performing the analysis. In

this case, the only solution

provided was a one-cluster

solution (perhaps suggesting

some validity to the Carnegie

Classification system). However,

using the K-Means partitioning

method forces the cluster

membership to be more uniform.

Table 15 shows the number of

institutions in each cluster for the five through eight cluster solutions using

the K-Means method. Although more evenly distributed, the cluster sizes

still vary greatly. More importantly, if a target institution is located in one of

the small clusters, the solution would not be suitable for peer institution

determination.

As mentioned above, the

proximity matrix is usually far

more useful for determining the

"nearest neighbor" institutions to

a target institution. For

demonstration purposes, we will

choose the University of

Southern California, which falls

within the thirty institution cluster

three of the hierarchical eight

cluster solution and also within

the thirty institution cluster six

of the K-Means eight-cluster

solution. Table 16 shows the

twenty-nine nearest neighbors to

Table 15

Cluster Frequencies for the 5

through 8 Cluster Solutions

Cluster

1

2

3

4

5

6

7

8

5 Cluster

Solution

25

75

12

3

29

6 Cluster

Solution

26

78

3

20

7

10

7 Cluster

Solution

7

54

30

3

3

40

7

8 Cluster

Solution

7

54

3

2

40

30

7

1
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Table 16

Nearest Neighbors Compared to Hierarchical and K-Means Solutions

Institutions

UNIVERSITY OF SOUTHERN CALIFORNIA (Target)

NORTHWESTERN UNIVERSITY

BOSTON UNIVERSITY

WASHINGTON UNIVERSITY IN ST LOUIS

GEORGETOWN UNIVERSITY

EMORY UNIVERSITY

UNIVERSITY OF MIAMI

TULANE UNIVERSITY OF LOUISIANA

GEORGE WASHINGTON UNIVERSITY

UNIVERSITY OF PnTSBURGH-MAIN CAMPUS

NEW YORK UNIVERSITY

VANDERBILT UNIVERSITY

UNIVERSITY OF MARYLAND-COLLEGE PARK

UNIVERSITY OF ILLINOIS AT CHICAGO

UNIVERSITY OF PENNSYLVANIA

UNIVERSITY OF VIRGINIA-MAIN CAMPUS

DUKE UNIVERSITY

CASE WESTERN RESERVE UNIVERSITY

NORTHEASTERN UNIVERSITY

UNIVERSITY OF IOWA

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

SUNY AT STONY BROOK

UNIVERSITY OF WASHINGTON-SEATTLE CAMPUS

UNIVERSITY OF CINCINNATI-MAIN CAMPUS

MARQUETTE UNIVERSITY

SUNY AT BUFFALO

BOSTON COLLEGE

UNIVERSrTY OF CHICAGO

UNIVERSITY OF FLORIDA

Standard

Euclidean

Distance

0

6.0301

7.7255

8.3194

9.6644

10.3252

11.3731

11.6378

11.7293

11.7771

11.8242

13.0488

13.5931

14.5512

14.6068

14.8273

15.1560

15.9863

16.1986

16.3627

16.4958

16.9441

16.9477

16.9592

17.0076

17.2150

17.3531

17.4265

18.3060

Rank of

Distance

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Hierarchical

8 Cluster

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

K-Means 8

Cluster

X

X

X

X

X

X

X

X

X

X

X

X
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Table 16 (continued)

Nearest Neighbors Compared to Hierarchical and K-Means Solutions

Institutions

UNIVERSITY OF WISCONSIN-MADISON

UNIVERSITY OF KENTUCKY

TEMPLE UNIVERSITY

UNIVERSnYOF MISSOURI-COLUMBIA

CARNEGIE MELLON UNIVERSfTY

TUFTS UNIVERSITY

UNIVERSITY OF CALIFORNIA-BERKELEY

CORNELL UNIVERSITY-ENDOWED COLLEGES

UNIVERSFTY OF ARIZONA

THE UNIVERSnYOF TEXAS AT AUSTIN

UNIVERSITY OF ROCHESTER

UNIVERSITY OF UTAH

MICHIGAN STATE UNIVERSITY

UNIVERSITY OF CALIFORNIA-IRVINE

TEXAS A&MUNIVERSrTY

PURDUE UNIVERSnY-MAIN CAMPUS

HARVARD UNIVERSITY

UNIVERSnYOF NOTRE DAME

UNIVERSITYOF NORTH CAROLINA AT CHAPEL

HILL

SAINT LOUIS UNIVERSnY-MAIN CAMPUS

COLUMBIA UNIVERSrTY IN THE CITY OF NEW

YORK

RICE UNIVERSITY

LEHIGH UNIVERSITY

PRINCETON UNIVERSITY

YALE UNIVERSITY

UNIVERSnYOF NEW MEXICO-MAIN CAMPUS

UNIVERSITY OF ALABAMA AT BIRMINGHAM

GEORGIA INSTITUTE OF TECHNOLOGY-MAIN

CAMPUS

YESHIVA UNIVERSITY

Standard

Euclidean

Distance

18.9855

19.7626

19.9824

20.0212

20.4008

20.5449

20.6761

21.3958

22.3728

22.5967

22.7624

22.8306

23.5501

23.7519

24.1569

24.2557

24.5868

24.8950

25.9354

26.7437

26.7461

28.4091

29.3976

32.3095

32.4000

32.7737

40.9372

41.4375

48.4981

Rank of

Distance

29

30

31

32

34

35

37

40

42

44

46

47

53

54

57

59

62

66

69

75

76

81

87

99

100

103

125

127

136

Hierarchical

8 Cluster

X

X

X

X

X

X

X

X

X

X

X

X

X

X

K-Means

8 Cluster

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
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the University of Southern California according to the proximity matrix, followed

by other institutions identified through either the hierarchical or partitioning

derived clusters.

The variation between cluster solutions is quite evident in Table 16.

Fifteen of the twenty-nine institutions (aside from USC) that occupy the cluster

three of the eight-cluster hierarchical solution and twelve of the twenty-nine

from cluster six of the eight-cluster K-Means solution are among the twenty-

nine nearest neighbors derived from the proximity matrix. However, only

three of these institutions are in common to all three solutions (and only four

institutions are in common between the two cluster groups). Institutions that

are in the cluster solutions but not among the nearest neighbors are shown

below the twenty-ninth institution in the proximity matrix (i.e., below the

University of Wisconsin, Madison). Many of these institutions are relatively

close in distance to the target, including six of the eight next nearest neighbors.

However, ten of the institutions appearing in one of the two cluster solution

groups are in the bottom half (i.e., below rank seventy-two) in distance from

the target institution.

The results of this cluster analysis highlight the instability of cluster

analytic methods as a "pattern recognition" algorithm. For this reason, most

peer institution techniques have relied on the proximity matrix for identifying

nearest neighbors. It is important to remember, however, that the proximity

matrix will produce markedly different neighbors depending on what measures

are employed, and whether the analysis is based on standardized or

unstandardized measures.

Cluster Analysis References

Institutional Research Applications

Cowles, D. & Franzak, F. (1991). Divide and conquer: Applying the

marketing concept of 'segmentation' to the placement function. Journal of

Career Planning and Employment, 51,59-63.

Goldgehn, L. A. (1989). Admissions standards and the use of key

marketing techniques by United States colleges and universities. College

and University, 65,44-55.

Muffo, J. A. (1987). Market segmentation in higher education: A case

study. Journal of Student Financial Aid, 17, 31 -40.

Rickman, C. A. & Green, G. (1993). Market segmentation differences

using factors of college selection. College and University, 68,32-37.

Wakstein, J. (1987). Identifying market segments. In R. S. Lay and J.

J. Endo (eds.), Designing and using market research, New Directions for

Institutional Research, No. 54. San Francisco: Jossey-Bass.
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Dillon, W. R. & Goldstein, M. (1984). Multivariate analysis: Methods
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Marketing Research, 20,92 -98.

Marriott, F. H. C. (1971), Practical problems in a method of cluster

analysis, Biometrics, 27, 501 -514.

Mezzich, J. E and Solomon, H. (1980), Taxonomy and behavioral

science, New York: Academic Press.
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for determining the number of clusters in a data set, Psychometrika, 50,159
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Sokal, R. & Sneath, P. (1963). Principles ofnumerical taxonomy. San

Francisco: W. H. Freeman.

Decision Trees

Decision trees are a form of hierarchical, divisive cluster analysis because

the analysis begins with all objects belonging to a single cluster with subgroups

subsequently split off. However, decision trees differ from the clustering

methods described thus far in two fundamental ways:

1. A single criterion (outcome) measure is used to maximize

differences among groups (e.g., students could be clustered to

maximize differences between those who are retained and those

who are not retained; institutions could be differentiated based on

maximizing differences in research expenditures).

2. Clusters are partitioned using one variable at a time, with

subsequent sub-clusters determined separately for each "branch"

of the tree using any of the remaining variables.

Because of the use of a criterion outcome, decision trees are somewhat

of a 'hybrid' (in function) between clustering and discriminant analysis. That

is, the criterion outcome variable does not define the groups, as in discriminant

analysis, but the groups are defined to maximize differences according to

the criterion.

For example, consider student retention. A discriminant analysis would

generate a linear combination of the classification variables that best

distinguishes returning from non-returning student groups. The decision tree

would find the best interaction of values among classification variables that

produces groups with the greatest differences in retention rates. The resulting

groups would be defined in terms of the classification variables (e.g., white,

females, over 25 years old, for which the group retention rate is xx%) and not

the criterion variables (e.g., returning students, who tend to have higher
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proportions of white females over twenty-five years of age compared to the

non-returning group).

Decision trees are particularly useful for identifying which variables

distinguish best among groups and for formulating group membership

prediction rules. These membership rules are then helpful for predicting

future observations. Moreover, the illustration of these differences through

the graphical representation employed by decision trees is very useful for

disseminating the results in a relatively non-technical format.

A range of decision tree techniques is available. The SPSS®

AnswerTree™ software includes three decision tree algorithms that all use a

"brute force" method to examine how well each and every possible classification

variable partitions objects based on the criterion variable. The three

algorithms—Chi-Square Aided Interaction Detection (CHAID), Clustering and

Regression Trees (C&RT), and Quick, Unbiased, Efficient, Statistical Tree

(QUEST)—perform several common functions:

• Merge categories of the predictor variables so that non-significantly

different values are pooled together

• Split the variables at points that maximize differences

• Stop branching when further splits do not contribute significantly

• Prune branches from an existing tree

• Validation and error estimation

The first of these features can be useful in and of itself as a pre-cursor

to other analyses. The merging of categories of predictors, sometimes called

discretization, helps determine appropriate cutoff points for predicting

outcomes. For example, many college admissions offices employ an

admissions index made up of a combination of entry characteristics, such

as entrance exam scores (SATs or ACTs), high school grades, co-curricular

activities, and so on. The discretization function of a decision tree analysis

determines the cutoff points that maximize differences on an outcome

measure, such as first-year college grades or retention to the second year.

This can be a very useful method for determining cutoff points for admittance,

or for validating existing cutoffs.

The three decision tree algorithms included in AnswerTree™ also have

some fundamental differences. The C&RT and QUEST algorithms are relatively

similar and employ only binary splits. That is, at each point in the tree, the

group can only be split in two. The CHAID algorithm allows for multi-group

splits and so provides greater flexibility for typical institutional research

applications. The C&RT and QUEST algorithms offer several advantages for

financial applications and so are commonly used for loan and insurance

eligibility.

Further details on the features and suitability of these techniques are

available in the references provided below. However, the best way to illustrate
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the uses of a decision tree analysis is by example. In the following section,

we examine a CHAID decision tree that segments the Doctoral Extensive

institutions to maximize differences in average research expenditures.

CHAID Decision Tree Example

Our example decision tree analysis employs the same institutional

data set used for the cluster analysis with the addition of two nominal variables:

institutional control (public or private) and whether the institution offers a

medical degree (yes or no). These two variables were chosen to demonstrate

how CHAID can employ both nominal and interval/ratio measures. Moreover,

an institution's research expenditures are impacted greatly by the presence

of a medical school.

When reading the data set into the Answer Tree software, the user

must specify a "target variable." This is the outcome criterion that will be

used to maximize differences on all other (predictor) variables for group

identification. In our example, annual research expenditures is chosen as

the target variable. When the data set is brought into the interactive CHAID

procedure, the software initially presents a "root node" which shows summary

statistics for the target variable. For this example, the root node shows that

the average research expenditures for the 144 institutions are just shy of

$165 million. The root node also notes that the standard deviation is just shy
of $158 million.

The user can proceed with building the CHAID decision tree in one of

two general ways: automatically, letting the software choose the best

predictors at each level; or manually, letting the user choose which variable

to enter at each level and sub-level of the tree. Regardless of which method

is chosen, the user can subsequently "prune" and re-grow branches of the

tree based on automatic or manual selection.

Figure 1 shows the default decision tree produced for this analysis. It

includes only one branching variable—total operating expenditures—which

parsed the institutions into two groups. Specifically, the cutoff on total operating

expenditures of just over $707 million split the institutions into one group of

eighty-six institutions that averaged just under $73 million in research

expenditures and one group of fifty-eight institutions that averaged just over

$300 million.

The use of total operating expenditures to distinguish among institutions

according to research expenditures is not very revealing, because research

expenditures is a portion of total expenditures. Therefore, the user might

wish to see what other variables account for significant differences between

institutions on this criterion. Figure 2 shows a portion of the predictor selection

table, revealing that only three other variables will generate statistically

significant group differences in research expenditures given the current "rules:"

whether the institution has a medical school, the percent of women enrolled,

and the percent of underserved minority populations enrolled.
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Figure 1

Default CHAID Decision Tree Distinguishing Doctoral Extensive

Universities on the Research Expenditures Criterion

Research Expenditures

Mean

Std. Dev.

n

%

Predicted

NodeO

164972747.5694

157888601.8957

144

100.00

164972747.5694

I t
Total Operating Expenditures

Adj. P-value=0.0000, F-146.2532, d^1,142

I

<=707858884

Nodei

Mean

Std. Dev.

n

%

Predicted

72934584.8140

49312307.4281

86

59.72

72934584.8140

>707858884

I

Mean

Std. Dev.

n

%

Predicted

Node 2

301443126.8276

164871856.5050

58

40.28

301443126.8276

Figure 2

Predictor Selection Table for CHAID Analysis of

Institutional Research Expenditures

Predictor |

# Total Operating Exp...

<$& Medical Degree?

# Enr Pet Women

$ Enr Pet Underserve...

^Institution Name

£Total Enrollment

# Enr Pet Full-Time

$ Enr Pet Undergrade..

# Degrees Pet Busine...

# Degrees Pet Educa...

Nodes |

2

2

2

2

Split Type |
Default

Default

Default

Default

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

Arbitrary

F

146.2532

28.8512

24.3031

1.2051

I
1

1

1

1

D.F. |
.142

,142

,142

,142

Adj.Prob.

0.000000000

0.000000312

0.000020385

1.000000000

Choosing the medical school field as the predictor results in the Tree

shown in Figure 3. This tree shows that the eighty-two universities that offer a

medical degree had average research expenditures of just over $221 million

compared to just over $90 million for the sixty-two universities that offer no

medical degree.

With this tree, as well as with the prior tree showing total operating

expenditures as the strongest predictor of research expenditures, no further

branching will occur under the default stopping rules. However, the user can

alter these rules, which include statistical significance criteria (i.e., p-level),

163



Figure 3

CHAID Decision Tree Using Medical Degree Status to

Distinguish Doctoral Extensive Universities on the

Research Expenditures Criterion

Research Expenditures

Mean

Std. Dev.

n

%

Predicted

NodeO '

164972747.5694 •

157888601.8957 I
144 i

100.00 |

164972747.5694 ,

"1 tf
Medical Degree?

Adj. P-valueaO.0000, F=28.8512, df=1,142

I

Mean

Std. Dev.

n

%

Predicted

1

Yes

1

Node 3

221193864.8659

157839506.8867

82

56.94

221193864.8659

Mean

Std. Dev.

n

%

Predicted

1

No

Node 4

90615785.9839

124456831.8237

62

43.06

90615785.9839

a default depth of three levels, and a minimum of fifty observations per group.

In this case, for example, if the minimum group size is dropped to twenty, the

Entering Student SAT/ACT variable becomes the second strongest predictor

(after total operating expenditures) resulting in the tree shown in Figure 4.

The model shown in Figure 4 distinguishes between three groups of

universities. The group of fifty-seven institutions with the lowest average

entry scores (SAT orACT equivalent less than 1120) averages just over $88

million in research expenditures. The middle group of forty-three institutions

with average entry scores between 1120 and 1210 averages just over $140

million in research expenditures. Finally, the forty-four institutions for which

the average entry score of students is above 1210 average about $287 million

in research expenditures.

So far we have considered only single node trees. Figure 6 shows an

extension of the Figure 5 model. Specifically, the "low average entry score"

institutions have been further divided into the twenty-nine among them that

have medical schools—-with average research expenditures of around $127

million and the twenty-eight schools among them that do not have medical

schools, which average research expenditures approximately $48 million.

The "middle entry score" group has been divided into three subgroups based

on a different variable: total enrollment. That is, the forty-three original

institutions were divided into eleven relatively small institutions (enrollments

less than 15,093) that average $37 million in research expenditures, fifteen

mid-sized institutions (total enrollment between 15,093 and 26,552) that
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Figure 4

CHAID Decision Tree Using Entering Student Average SAT/

ACT Score to Distinguish Doctoral Extensive Universities on

the Research Expenditures Criterion

Mean

Std. Dev.

n

%

Predicted

<=1120

1

Nodei

88169124.7895

64551719.9247

57

39.58

88169124.7895

Research Expenditures

Mean

Std. Dev.

n

%

Predicted

NodeO

164972747.5694

157888601.8957

144

100.00

164972747.5694

' Lz
Average SAT or ACT Equivalent

Adj. P-valueaO.0000, F=28.3820, df=2,141

(1120,1210)

Mean

Std. Dev.

n

%

Predicted

Node 2

141204984.7674

129746236.1685

43

29.86

141204984.7674

Mean

Std. Dev.

n

%

Predicted

>1210

I

Node 3

287695936.1818

192971560.3445

44

30.56

287695936.1818

average $89 million in research expenditures, and the seventeen relatively

large institutions (total enrollment greater than 26,552) that average $255

million in research expenditures. The third node of the original model was

not divided any further.

This last model shows some unique and powerful features of decision

trees in general and CHAID in particular. This technique lets the user explore

different combinations of variables to predict differences in the outcome

criterion. Moreover, the user can choose different "interaction" variables within

levels of the tree, as we saw by using the medical school distinction for one

node at the second level, and using total enrollment for a different node.

Decision trees can be a very powerful tool for exploratory analysis of group

differences. However, because they are so data driven (i.e., potentially

unstable for different samples), the user should be careful to test models

across multiple samples. In addition, exploratory findings should be subject

to confirmatory statistical analyses to determine if they are reliable.

Decision Tree References

Institutional Research Applications

Lay, R. S. & Maguire, J. J. (1983). Computer aided segmentation

analysis: New software for college admissions marketing. Journal of College

Admissions, 101, 32-36.
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Figure 5

Further Predictors for CHAID Decision Tree Model

Research Expenditures

Mean

Std. Dev.

n

%

Predicted

NodeO

164972747.5694

157888601.8957

144

100.00

164972747.5694

i LJ
Average SAT orACT Equivalent

Adj. P-vaIue=0.0O00, F=28.3820,

<=1120

I

Mean

Std. Dev.

n

%

Predicted

Nodei

88169124.7895

64551719.9247

57

39.58

88169124.7895

i LJ

(1120,1210]

I

Mean

Std. Dev.

n

%

Predicted

Node 2

141204984.7674

129746236.1685

43

29.88

141204984.7674

I Id

Mean

Std. Dev.

n

%

Predicted

>1210

Node 3

287695936.1818

192971560.3445

44

30.56

287695936.1818

Medical Degree?

Adj. P-*Blue=0.0000, F=33.9127.

Total Enrollment

Adj. P-*alue=0.0000. F=23.1585, df^2,40

Mean

Std. Dev.

n

%

Predicted

Yes

I

Node 6

126997021.4828

66330006.2020

29

20.14

126997021.4828

Mean

Std. Dev.

n

%

Predicted

No

I

Node 7

47954517.5000

27991037.6561

28

19.44

47954517.5000

<=15093 (15093,26552]

Mean

Std. Dev.

n

%

Predicted

Node 8

37209184.3636

39565778.2852

11

7.64

37209184.3636

Mean

Std. Dev.

n

%

Predicted

Node 9

88778148.0667

30869699.4853

15

10.42

88778148.0667

Mean

Std. Dav

n

%

Predicted

>26552

i
Node 10

254755358.5882

136621805.3850

17

11.81
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Summary and Conclusions

This chapter presented two techniques for examining differences among

pre-existing groups (discriminant analysis and logistic regression), and one

general class of analyses (cluster analysis) along with several specific

manifestations (hierarchical and partitioning techniques; use of the proximity

matrix to identify nearest neighbors; and CHAID decision trees for mining

complex interactions among predictors of group outcomes) for identifying

groups that do not exist, a priori. Despite its length, this chapter has only

scratched the surface on each of these topics. References are provided at

the end of each section to guide the reader who seeks more in-depth

information about each technique and its application to some typical

institutional research problems. After gaining sufficient general understanding,

the author suggests that the reader consider developing more in-depth expertise

and experience in three areas.

First, logistic regression has become the coin of the realm for examining

differences in existing groups. With the extension to multi-group

(polychotomous) outcomes available through multinomial logistic regression

and to rank-order outcomes, through ordinal logistic regression, this family of

related techniques provides sufficient scope to cover virtually any analysis of

pre-existing groups that an institutional researcher would likely encounter.
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The second recommended focus is on the selection of similarity and

distance measures and the use of the proximity matrix to identify nearest

neighbors. The example in this chapter employed only interval/ratio measures

to develop the proximity matrix for peer institution selection. However, one

might also want to include a set of categorical variables, such as control,

geographic location, or the presence or absence of particular programs or

facilities. Matching-type measures, for example, enable one to combine

measures on varying scales (nominal, ordinal, interval, and ratio) into a single

similarity measure.

Finally, decision trees, and CHAID in particular, are very useful techniques

for exploring relationships among objects, especially when one has a

meaningful criterion measure. In our example, we explored group differences

among research universities with research expenditures as the criterion.

CHAID analyses are also useful in examining the efficacy of admissions

criteria in relationship to a success-related outcome, such as freshman year

grades or retention to the second year. However, as an exploratory technique,

it is important to conduct more confirmatory statistical analyses on the findings

to establish their reliability at a more general level.

The methods considered in this chapter provide institutional researchers

with an array of useful tools for many common IR applications. In closing, it

is important to underscore the need for well-grounded conceptualization and

theory to render these powerful tools and techniques useful. Like any power

tool, they can produce wonderful results if the user has a well-conceived

design and is skilled in the use of all available features. Although safety

glasses are not required, the repercussions for irresponsible use can be just

as damaging.

Endnotes

1 At this point we are considering only "dichotomous" group outcomes

as handled by the t-statistic. We will touch briefly upon "polychotomous"

(more than two group value) outcomes later.

2 When using this technique, an adjustment must be made in the error

terms used to test the coefficients in the second stage model, as proposed

byHeckman(1979).

3 The null population value for the odds ratio (i.e., the exponent of b) is

one, since e° = 1.
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Chapter 6

Applied Multivariate Statistics

Mary Ann Coughlin

In layperson's terms, multivariate statistics are any inferential statistical

procedures that utilize one or more indicator or predictor variables to explain

multiple outcome variables. Multivariate statistics allow us to analyze complex

data sets. Further, these statistics provide for analysis where many

independent variables are used and multiple dependent variables are present

that correlate to each other to varying degrees. While whole volumes have

been written on this topic alone, to date, little has been written on the direct

application of these statistics within the field of institutional research. Within

the context of this chapter, my hope is to introduce the area of multivariate

statistics as applied in institutional research. The chapter is designed to

provide the reader with underlying theories of multivariate statistics and direct

applications of these statistical procedures to problems commonly faced in

institutional research. The goal of this document is to present a summary of

three multivariate techniques (path analysis, exploratory factor analysis, and

confirmatory factor analysis) and to demonstrate each with examples and

illustrations. Additionally, the chapter will end with a brief introduction to

structural equation modeling. Given the breadth of the material covered,

please consult the references provided for depth greater than appropriate

from a document of this scope. The chapter will be organized into the following

sections: path analysis, factor analysis, and structural equation modeling.

Path Analysis

As we discuss our first multivariate statistical procedure, we will review

the theoretical and logical associations that exist between path analysis and

techniques presented in prior chapters. Next, we will describe this technique

in depth through the use of a case study application of path analysis in

institutional research. We will end this section with a summary of the

interpretation of our case study and a discussion of the application of this

technique in institutional research.

Statistical and Theoretical Background

As was identified in prior chapters, the association between two variables

is the statistical basis for many inferential statistical techniques. Correlation

measures both the strength and the direction of the relationship between two

variables. The relationship that is measured between the variables is the

mutually shared relationship between the two variables, thus no independent

or dependent variables are identified. As a result no causality can be implied

from that shared relationship. Bivariate regression logically extends the concept
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of correlation by using a linear predictive model to determine the degree to

which a single predictor (i.e., independent) variable can be used to predict or

explain a criterion (i.e., dependent) measure. Multiple linear regression can

be described as a logical extension of bivariate regression where multiple

predictor variables are used to create a more complete explanation of the

one criterion measure. In almost all cases, multiple regression is considered

to be advantageous as seldom can any outcome be adequately explained by

a single predictor variable. Our first multivariate technique, path analysis can

logically be viewed as an extension of multiple linear regression. In path

analysis, multiple predictor variables are used in a linear model to predict or

explain multiple criterion measures. A focus in path analysis is the predictive

ordering of variables; thus, path analysis allows the researcher to test an

integrated theory of influences among a set of variables. The theoretical

similarities and differences between regression and path can be summarized

by stating that: the model 'X predicts Y' is a regression model, whereas, 'X

predicts or influences Y and Y predicts or influences Z' is a path analysis

model.

Path analyses are commonly displayed in figures (path diagrams) that

represent the relationships that are being tested in the model. Path diagrams

are drawn so that the flow of influence of the variables in terms of causal

ordering is from left to right. Figure 1 displays a theoretical path model that

describes the relationship between two predictor variables and two criterion

or outcome measures. As we move from regression analysis to path analysis

and review this figure, we must clarify new terms. The path diagram displays

the observed variables and the proposed relationships between the variables.

Observed variables are those variables that are 'observed' or measured by

the researcher. These variables are displayed as squares on the path diagram

and arrows display the relationships between the variables.

In path analysis, all variables are observed variables and we label

variables as being exogenous or endogenous. Endogenous variables are those

Figure 1

Theoretical Path Model
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variables that the model attempts to predict or explain. Arrows point toward

endogenous variables. In our theoretical model displayed in Figure 1, Y1 and

Y2 are endogenous variables, because they are being explained within the

model. Thus, endogenous variables are similar to dependent or outcome

measures. Exogenous variables are those variables that the model makes

no attempt to predict or explain. Variables that do not have arrows directed

toward them are exogenous. In Figure 1, X1 and X2 are exogenous; no

explanation exists for their variance within the model and no arrows are pointing

to these variables. The exogenous variables are by definition similar to predictor

variables. So while endogenous variables are similar to dependent variables

and exogenous variables are similar to independent variables, the change in

terminology must be made in path analysis because variables may be used

as both independent and dependent variables within a particular path analysis.

In Figure 1, for example, Y1 is an endogenous variable that is predicted from

X1 and X2, but Y1 is also used as an independent variable to predict our

second endogenous measure Y2. In path analysis, we use the terms

exogenous and endogenous as opposed to independent or dependent variables.

Also in path analysis, we identify the influences of variables within the

model as either direct or indirect effects. Direct effects are those parameters

or coefficients that estimate the 'direct' influence one variable has on another.

The lines on the path diagram indicate the direct effects or casual relationships

that are identified in the model. In Figure 1, X1 and X2 have a direct effect on

Y,; in addition, X1 and Y1 have a direct effect on Y2. Indirect effects are not

indicated on the path diagram. In our model, X1 and X2 have an indirect effect

on Y2 through Yr

Relationships between exogenous variables are commonly displayed

on the path diagram as curved double-headed arrows. As is the case in any

prediction model, errors in prediction exist. The errors in prediction are normally

indicated on the path diagram as circles that contain an "e," as they are

estimates of the errors in prediction and not observed variables. Sometimes

because of printing constraints or to keep a path diagram from appearing as

cluttered, the double-headed arrows or the arrows and coefficients for the

residuals may be omitted from the diagram. In these cases, the terms are

assumed to be present in the model, although not displayed. Now let us

explore path analysis through a case study application in institutional

research.

Case Study: An Examination of Performance in Graduate School

This case study will explore path analysis by examining the ability of

student characteristics to predict performance in graduate school. The dean

of the graduate program at a small public university is interested in determining

the extent to which student characteristics can be used to predict performance

in graduate school. The dean is concerned that students are not being properly

identified for selection into her graduate program. The dean is concerned that
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too much emphasis is being placed on standardized tests and not enough

emphasis is being placed on prior academic achievement. After identifying a

model that will explore the ability of SAT and undergraduate Grade Point

Average (GPA) to predict Graduate Record Examination (GRE) scores and

the ability of these variables to predict graduate school GPA, path analysis

was identified as the appropriate statistic to analyze the data. Path analysis

is the appropriate statistical analysis for this research question, because of

the presence of multiple dependent variables and the ordering of variables

across time. SAT and undergraduate GPA will be used as the predictor

variables to explain the variance of GRE scores. Additionally, in the second

stage of this model, the researcher will test the ability of these variables to

predict graduate school GPA. Figure 2 graphically displays this model. In

this model, we have two endogenous variables, GRE and graduate school

grade point average, and two exogenous variables, SAT and undergraduate

grade point average.

Figure 2

Case Study: Path Diagram

Undergraduate

GPA

SAT

~~—-^

y GRE

i>

Graduate

GPA

Before exploring our case study further, we should first review the basic

statistical assumptions of path analysis and ensure that our data meet the

requirements of the statistical procedure. As discussed earlier path analysis

is based on the techniques of multiple regression; as a result the assumptions

of multiple linear regression described in chapter three apply for path analysis

as well. The statistical assumptions regarding measurement error and the

multicollinearity of predictor variables again warrant the attention of the

researcher. Modest levels of multicollinearity are, however, tolerated within

path analysis. While, model specification errors are problematic in regression

analysis, they are particularly worrisome in path analysis because of the

possible additive and interactive influences of these errors in the prediction of

multiple endogenous variables. Specification errors refer to those errors made

in correctly identifying the regression or path model. The researcher could

either incorrectly include a variable in the model that does not belong, or may

omit a variable from the model that does belong. The latter specification error

is more problematic than the former, but as was identified earlier in the
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regression chapter of all of the problems facing analysts when using predictive

techniques, this error is perhaps the most difficult to overcome. Virtually all

models are subject to criticism for omitting relevant factors. Finally, a question

arises about how large a sample size is sufficient to provide confidence in the

results of the analysis. Although most path models require a minimum of

200 to 300 cases, the answer to this question depends upon the number of

parameters being estimated within the model. For more complicated path

models, Klem (1995) suggested having at least five to ten observations per

estimated parameter. A parameter is defined as an element estimated within

the path analysis. Thus, each straight arrow in a path diagram is counted as

a parameter. Each double headed arrow and arrow for estimate of error in

prediction also count as a parameters to be estimated. Thus, in our case

study example we have a total of seven parameters to be estimated. Figure

2 displays four direct effects, one relationship between the two exogenous

variables, and two residuals or errors in prediction. The four direct effects are

the path coefficients between SAT and GRE, undergraduate GPA and GRE,

undergraduate GPAand graduate GPAand GRE and graduate GPA. The

relationship between SAT and undergraduate GPA will be estimated. Finally

two residual path coefficients will measure the residual or error in prediction

for both GRE and graduate GPA. Thus, the minimum sample size that we

would need for this analysis (n = 70 - 200) is well within the size of our case

study sample (n = 539). In addition, we find only a moderate relationship

between SAT and undergraduate GPA (/*= .483) and therefore expect limited

issues with multicollinearity. Finally, since SAT and undergraduate GPA are

measured independently, we expect that the error in the measurement of

these variables is unrelated. From an initial assessment, the data for our

case study do meet the requirements of the assumptions of path analysis.

As we begin exploring our case study, we must start by reviewing our

proposed model (Figure 2). In this model, we have two endogenous variables,

GRE and graduate school grade point average, and two exogenous variables,

SAT and undergraduate grade point average. In addition, we have the seven

parameters to be estimated as described above. So the first step in completing

our analysis is to calculate the path coefficients. Path coefficients display

the logical link between regression and path analysis, as each path coefficient

is the regression coefficient from the appropriate regression analysis. A bivariate

or multiple regression analysis is calculated for each endogenous variable in

the model. Within each regression analysis the predictor variables are the

exogenous variables and the dependent or criterion variable is the relevant

endogenous variable. In fact, when a model has an endogenous variable that

is predicted from one exogenous variable and bivariate regression is used to

calculate an unstandardized path coefficient; the path coefficient will be equal

to the correlation coefficient (r). For our case study two multiple regression

analyses would be computed. One analysis would specify GRE as the

dependent variable and SATand undergraduate GPAas the predictor variables.
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The second would specify graduate GPA as the dependent variable and

undergraduate GPA and GRE as the predictor variables. These path

coefficients represent the direct effects in the model. The path coefficients

are partial regression coefficients that measure the extent of effect of one

variable on another in the path model controlling for other prior variables.

Similar to regression, these coefficients can be calculated as either

standardized or unstandardized coefficients. Path coefficients are most often

displayed in standardized format, so that the magnitude of the relationship

across different effects can be compared. In path analysis, we distinguish

between two different types of standardized coefficients: gamma and beta.

Gamma coefficients are those relationships that exist between exogeneous

and endogeneous variables, while beta coefficients are those relationships

that exist between two endogeneous variables. So in our model we have

three gamma (t|) coefficients and one beta (p) coefficient.

So when should a researcher present standardized coefficients as

opposed to unstandardized coefficients or vice versa? Standardized

coefficients are most often displayed when the researcher wishes to describe

the relative importance of the predictor variables and the advantage of

unstandardized coefficients is that the researcher can describe the impact

on the dependent variable of a one-unit change in the predictor variable. Thus,

standardized coefficients are often presented on path diagrams and

unstandardized coefficients are often presented in summary tables.

While the path coefficients can logically be calculated by running multiple

regression analyses, we will useAMOS (Arbuckle, 2003) statistical software

to calculate our path analysis case study. AMOS has several advantages

over using regression when computing path analysis, the least of which is

the ability to run one procedure to calculate the path coefficients for the

model. Another advantage to AMOS over regression for calculating path

analysis is the ability to test the fit of the model. Figure 3 displays the

standardized path coefficients on our path model and Table 1 contains the

text output from AMOS with both the standardized and unstandardized

coefficients.

Now that we have explored the direct effects, we will explore the indirect

effects. The indirect effects are those influences that a variable has on an

endogeneous variable that are mediated through other variables in the model.

In our model, both SAT and undergraduate GPA have indirect effects on

graduate GPAthat are mediated through GRE. The paths involved in an indirect

effect are sometimes referred to as compound paths as they involve chains

of straight arrows, where the path flows in the direction of the arrows. To

calculate the indirect effects first locate all of the indirect routes or compound

paths and then multiply the path coefficients found on each segment of the

indirect route. If only one indirect route exists, as is valid in our case study,

then the indirect effect is the product of the path coefficients. If more than one

compound path exists then the indirect effect for that variable is equal to the
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Figure 3

Case Study: Output Path Diagram

Table 1

AMOS Text Output: Parameter Estimates

Regression Weights: (Group number 1 - Default model)

GRE «

GRE -

GRE «

ggpa <

ggpa *

iSPa *

l

<-- Verbal 1
c- el i

-- COLLEGEG ;

--- E2 j
c™ COLLEGEG !
c— GRE i

Estimate

.274

78.847

145.936

.262

.574

.000

S.E.

.047

2.404

11.587

.008

.042

.000

C.R.

5.862

32.802

12.594

32.802

13.722

3.446

P

mm*

4HHIH

Label

Standardized Regression Weights: (Group number 1 - Default model)

GRE <— Verbal

GRE <— el

GRE <— COLLEGEG

jggpa <— E2

jggpa <— COLLEGEG

iggpa <— GRE

Estimate

"""'.225*
.781

.484

.759

.558

.140

sum of the products for each path. For our case study, the indirect effect of

SAT on graduate GPA is .032 (.225 x .140) and the indirect effect of

undergraduate GPA on graduate GPA is .068 (.484 x .140). Remember, a

variable in a path model may have only direct effect(s) on one or more variables

in the model or may only have indirect effect(s), or may have both. The sum

of all direct and indirect effects is sometimes referred to as the total effect or

effect coefficient. The total effect for SAT on graduate GPA in our model is

.032 or the indirect effect that we just calculated for SAT to graduate GPA,

because SAT has no direct effect on graduate GPA. The effect coefficient for

undergraduate GPAto graduate GPA is .626 (.558 + .068), which is the sum
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Table 2

AMOS Text Output: Standardized Effects

Standardized Direct Effects (Group number 1 - Default model)

ORE

COLLEGEG Verbal

.484 .225

.558 .000

GRE

.000

.140

Standardized Indirect Effects (Group number 1 - Default model)

GRE

COLIEGEG

.660"

.068

of the direct effect of undergraduate GPA to graduate GPA plus the indirect

effect that we just calculated. Notice that the total effect for undergraduate

GPA has one direct effect and one indirect effect included in the coefficient,

while the etfect coefficient for SAT has only one component, the one indirect

effect. Table 2 displays the text output from AMOS with all the standardized

direct, indirect and

total effects for both

endogenous

variables, GRE and

graduate GPA.

Before we

discuss implied

coefficients and the

fit of the model, we

should describe the

amount of variance

of the endogenous

variables that is

explained by the

predictor variables.

On path diagrams

Standardized Total Effects (Group number 1 - Default model) with Standardized

coefficients, the

correlation between

the error term and

the endogenous

variable is

displayed. We can then square the correlation coefficient to determine the

amount of unexplained variance. To determine the amount of explained variance

subtract the unexplained from one. For our case study, the amount of variance

in Graduate GPA that is explained in our model is .42 or (1 - .762) and for

GRE .39 (1 - .782). Certainly, our model explains a substantial portion of the

variance of each endogenous variable.

An implied correlation, as the name indicates, is the coefficient implied

by the model! A coefficient implied by the model consists of four components:

direct effect, the sum of the indirect effects, the sum of spurious effects, and

the sum of unanalyzed effects. Now we must explore spurious and unanalyzed

effects. An unanalyzed effect is an effect that involves the correlation between

exogenous variables. Remember, exogenous variables are those variables

that the model makes no attempt to predict or explain and a double-headed

or curved arrow denotes the relationships between exogenous variables. In

our path model, the implied correlation between undergraduate GPA and

GRE contains an unanalyzed effect, which is the effect of undergraduate

GPA on GRE that flows through SAT. This effect, which is calculated as the

GRE

ggpa

COLLEGEG

.484""""

.626

Verbal

" ~225
.032

Verbal GRE

"~ .000 jOOO
.032 .000

GRE

.000

.140

176



product of two coefficients (.225 x .483), is unanalyzed because it involves a

correlation (SAT and undergraduate GPA) for which order is not specified.

Spurious relationships occur when variables have common cause. A path

that goes against the direction of the arrows on the path diagram characterizes

a spurious effect. When a path from one variable to another contains any

common cause, the effect is said to be spurious rather than unanalyzed.

The implied correlation between any two variables in a model can be calculated

by computing each of the individual effects (direct, indirect, spurious, and

unanalyzed) and then summing those effects. Analysis of the difference

between the implied correlation and the observed correlation will play a large

part of the test of the goodness of fit of the model. Before we review the

goodness of fit tests we should discuss various types of models.

We must first make the distinction between fully recursive or saturated

models and recursive models. In a fully recursive model, each variable has a

direct effect on every other variable found below it on the casual chain. Figure

4 displays a fully recursive model. In this model each variable introduced has

direct effect on every variable that follows the variable in the model. Thus, the

first variable in the model (A) has a direct effect on every subsequent variable

in the model. In a model that is recursive, but not fully recursive, one or more

of the variables will not have a direct effect on subsequent variables in the

sequence of the variables in the model. This distinction is important to note,

because a model that is fully recursive will always fit the data perfectly.

Thus, the researcher cannot test the fit of a fully recursive model. When first

creating models, researchers tend to create fully recursive models due to the

fact that every variable is assumed to have some logical connection to every

other variable; yet meaningful models are derived from theory and are

parsimonious in nature.

Figure 4

Fully Recursive Model

Another important distinction in types of models is between recursive

and non-recursive models. A recursive model is one in which all of the effects
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are unidirectional and no reciprocal causation exists among variables. A

reciprocal causation exists between two variables when variableA is assumed

to have a direct effect on variable B and variable B is assumed to have a

direct effect on variable A. Thus, two arrows would be found between the

variables. In recursive models, the error terms in the model are assumed to

be uncorrelated with each other, while in non-recursive models, the error

terms must be assumed to be correlated. In this chapter, we are only dealing

with recursive models. Again, while non-recursive models may appear to be

attractive to the researcher, it is difficult to estimate their parameters and the

discussion of these models is beyond the introductory level of this text.

In general terms, the fit of the model is determined by comparing the

observed correlation matrix to the implied correlation matrix for the model.

Many fit statistics exist and the debate over the correct interpretation of fit

statistics in the literature is prolific (Hu & Bentler, 1999; Steiger, 1990; Wheaton,

1987). Within the scope of this text, we will introduce the concept of fit

statistics and describe three of the more basic fit statistics: Chi-Square,

Normed Fit Index (NFI), and Root Mean Square Error of Approximation

(RMSEA). For a more complete description of fit statistics refer to (Hu &

Bentler, 1999; Steiger, 1990). The chi-square goodness of fit statistics

compares a fitted variance-covariance matrix to the observed variance-

covariance matrix on an element-by-element basis. A fitted variance-

covariance matrix is calculated from the specifications of the model and is

the variance-covariance matrix that would be found, if the model were correct.

By comparing these matrices on an element-by-element basis the chi square

test is a test of whether or not these residuals are significantly different from

zero. As a result, the residuals should be small and not significantly different

from zero to indicate a fit of the data to the model. Thus, unlike other statistics

where significance is a desired finding, one would want the chi-square to be

non significant. The fit statistics from the AMOS text output for our case

study are presented in Table 3. As we examine our first fit statistic from our

case study, we can see that the residuals are large and our chi-square is

significant, which is not a good sign for supporting the fit of our model. Many

researchers dismiss the chi-square fit statistic as one that often does not

support the fit of a model due to the fact that with large sample sizes small

residuals are often statistically significant. On the other hand, small sample

sizes often lack the statistical power to find significance; researchers often

use both sides of this argument to refute findings that do not support their

model. Thus, it is important to explore other fit statistics to provide support

for our model. Another chi-square comparison that is commonly made is to

compare the chi-square for one's model to the chi-square for an independence

model. An independence model is a model that specifies that all variables

are uncorrelated. Therefore, the chi-square for this test is most often significant,

but to indicate a fit of data to the model, the chi-square for the baseline model

must be less than the chi-square for the independence model. For our case
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Table 3

AMOS Text Output: Fit Statistics

Model Fit Summary

CMIN

Default model

Saturated model

Independence model

NPAR

14

8

5CL544

.000

756.300

P

~000~

.000

CMM/DF

5O544

126.050

Baseline Comparisons

r
Model

I Default model

i Saturated model

| Independence model

! NFI
| Deltal

T~933
| 1.000

.000

RPI

rhol
-~—-

.000

M

Delta2

.934"
1.000

.000

TLI

rho2

.604

.000

CFl

._ - _J
.934 i

1.000 I
.000 ]

RMSEA

_Model_ __ __

Default model

Independence model

JfcMSEA

.303

.482

LO90

.23?

.453

HI 90

"'" .377

PCLOSE

.000

Jll .000]

study, we have

met this standard;

as the chi-square

for the baseline

model, while

significant (X2 =

50.54, p < .00) is

less than the chi-

square for the

independence

model (X2 =

756.30, p < .00).

The Normed Fit

Index is a ratio of

this comparison.

To calculate this

statistic, we

would first

calculate the ratio

of the baseline

model chi-square

to the

independence model chi-square and then subtract that ratio from one. For

our model NFI is equal to .933, which was calculated as .933 = [1 - (50.54/

756.30)]. The range of values for fit indices is between 0 and 1.0. In general,

fit indices above .90 indicate a fit of the model to the data; values below .90

indicate that the model can be improved. Thus, the NFI for our case study

(NFI= .933) supports the fit of our model.

The last fit statistic that we will discuss is the Root Mean Square Error

of Approximation (RMSEA). This statistic answers the question "how well

would the model, with unknown but optimally chosen parameter values, fit

the population covariance matrix if it were available" (Browne & Cudeck, 1993,

137-138). A value of about 0.08 or less for the RMSEA would indicate a

reasonable error of approximation and would support the fit of the model by

the data. Values greater than 0.1 for the RMSEA do not support model fit.

For our case study, the RMSEA (.303) does not support the fit of the model.

In general, RMSEA favors more complex models and will tend to favor models

with many parameters, which does not bode well for our case study model.

So what do we know from our case study? First, the magnitude of our

path coefficients and the logic of those coefficients provide support for our

proposed model. In Figure 3, we found that Undergraduate GPAwas a strong

predictor of both GRE (r\ = .48) and Graduate GPA (r\ = .56) and interestingly

that SAT was a weaker predictor of GRE and GRE (r| = .23) was a much

weaker predictor of Graduate GPA (p = .14).
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Additionally, the explained variance of both endogenous variables is

more than reasonable (R2GRE = .39; R2GGPA = .42). These direct effects and

the magnitude of the explained variance supports the Dean's assertion that

performance in undergraduate programs should be emphasized in the selection

of students for graduate programs. A limitation to this model is an inconclusive

fit of the model to this data. It is important to note that the "Fit" of a model is

not a direct test of the magnitude of coefficients or the amount of variance

explained in the endogenous variable and fit does not confirm the correctness

of the model. Fit of a model is a measure of the extent to which the data align

with data that would be implied by the proposed model. Often, fit statistics

contradict one another. As we saw in our case study, NFI provides support

for our model and RMSEA and Chi-square do not. Even in those cases where

multiple fit statistics support the model, one still must not conclude that the

model is the best or only model. The model is simply a model that fits the

data; other models might be just as good if not better. These other models

have simply not been tested or specified yet. So how does a researcher

proceed? With caution! Certainly, this preliminary model is interesting and

has implications for the institution, yet I would recommend the researcher

further explore other models and consider what other variables might add to

the explanation of Graduate GPA. As the researcher considers further models,

I would emphasize the importance of using theory and model testing. In path

analysis and all forms of structural equation modeling the researcher must

be guided by theory not data exploration!

Factor Analysis

The second statistical procedure that we will cover is factor analysis.

Again as we explore this statistic, we will review the logical theoretical

associations between factor analysis and techniques presented in prior

chapters. Next, we will describe this technique in depth through the use of a

case study application of factor analysis in institutional research. We will

end this section with a summary of the interpretation of our case study and a

discussion of the application of this technique in institutional research.

Statistical and Theoretical Background

Factor analysis is used to explore the interrelationships among variables

to discern whether or not the variables can be grouped into a smaller set of

underlying factors. Three primary applications of factor analysis exist. The

first purpose is to explore the data for underlying patterns. Factor analysis

explores the interrelationships between the items or variables for the presence

of underlying factors. Exploratory factor analysis is used for this application.

The second application is for data reduction. Factor analysis can be used to

reduce a large number of variables into a smaller and more manageable

number of factors. Factor analysis can create factor scores for each subject

that represent these higher order variables. Exploratory factor analysis is
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also used for this application. The third purpose is to confirm the existence of

a pre-existing factor structure. When a given factor structure exists within

the data, confirmatory factor analysis can be conducted to support the validity

of this factor structure. Within institutional research, exploring the data for

underlying patterns and reducing data are the primary applications of factor

analysis.

Factor analysis is commonly used with surveys or instruments that

have many items, some of which could be logically linked to represent one or

more higher order factors or constructs. In institutional research, factor analysis

is commonly used with senior or alumni surveys including many items

designed to assess the outcome of undergraduate experiences. In exploratory

factor analysis, the researcher is exploring the data to determine if the variables

can be grouped into a smaller set of underlying factors.

As a result of the exploratory nature of the analysis, all variables are

assumed to have a relationship with all factors. Diagrams are also used to

display the factor structure. In Figure 5, a theoretical two-factor model, which

is being tested using exploratory factor analysis, is displayed. In this model,

a total of six items are measured and the model suggests a two-factor

structure. Notice that in exploratory factor analysis all items are proposed to

have some relationship with both factors, which is noted by the arrow drawn

from each factor to each item. In reality, the researcher may have designed

the items around the two factor structure and it may logically be that factor

one should consist of items one, two, and three, and factor two should consist

of items four, five, and six. The model that is tested in exploratory factor

analysis does not however, test or confirm the model; it rather explores the

data for patterns. Confirmatory factor analysis is used to confirm the existence

of a pre-existing factor structure.

Now that we have introduced our exploratory factor model (Figure 5),

we have introduced new concepts and terms. In path analysis, we introduced

the term "observed variables" as those variables that are measured by the

researcher. Remember these variables are displayed as squares in our

models. In factor analysis, the observed variables represent the items that

are observed or measured. We are exploring the relationships between these

items and attempting to group the items into a smaller set of underlying

factors. In factor analysis, we now introduce the concept of "latent variables."

Latent variables are unobserved variables or hypothetical constructs. These

variables are not directly measurable; rather the researcher only has indicators

of these measures. These variables are often the more interesting but difficult

variables to measure (e.g., leadership, social awareness, or academic

achievement). In Figure 5, the latent variables are the two factors. The latent

variables are drawn as circles to indicate that they are not directly measured.

Notice that the arrows start at the factor and point toward the item. The

direction of the arrows is important and is indicative of the fact that the factor

or construct is thought to influence the individual's score on the given item;
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Theoretical Two-Factor Exploratory

Factor Analysis Model

not the other way around. For example, if the factor is empowerment, and I

believe in empowerment, I should rate the items that measure empowerment

higher. Because errors in measurement always exist, all items have an error

component, which are indicated on our model (Figure 5) as circles that contain

an"e."

Confirmatory factor analysis is an extension of exploratory factor analysis

that meets the final of the three primary applications of factor analysis, which

is to confirm the presence or existence of an existing factor structure. Figure

6 compares the exploratory factor analysis that is contained in Figure 5, to a

confirmatory factor analysis that would be used to confirm the hypothesized

two-factor model.

Confirmatory factor

analysis differs from

exploratory factor

analysis in that for

a confirmatory

analysis, the

specific

relationships

between the items

and the factors are

confirmed. Certain

items are

hypothesized to be

associated only

with given factors;

thus not all items

have arrows to all

factors. Therefore

within the

confirmatory model

found in Figure 6,

items one, two, and

three are solely

associated with

factor one, and

items four, five, and

six are exclusively associated with factor two. The double-headed curved line

linking the two factors indicates that a relationship exists between the factors.

Again, the circles with the "e" represent the errors in measurement.

It is important to note that a researcher should not run an exploratory

factor analysis on a data set and then use the same data to confirm the

factor structure. Using this procedure one would almost be insured to confirm

the structure supported from the exploratory analysis. With large samples,
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Figure 6

Comparison of Exploratory to Confirmatory Models
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Pedhauzer and Schmelkin (1991) suggest the use of a cross-validation

procedure where the researcher randomly splits the sample in half and runs

the exploratory analysis on the first sample and the confirmatory analysis on

the second sample. In institutional research when we use the same senior

(i.e., exit) or alumni survey across multiple years, the researcher may use

samples from different years for the exploratory and confirmatory analyses.

By using multiple years of data, the researcher can use the results of the

exploratory analysis to modify the survey and then use data from the revised

instrument to confirm the existing factor structure. Exploratory factor analysis

can be completed using many common statistical software packages, such

as, SPSS and SAS. Confirmatory factor analysis leads us into structural

equation analysis and specialized statistical software, such as, LISREL

(Joreskog & Sorbom, 1999), orAMOS (Arbuckle, 2003).

Case II: Annual Survey of Graduating Students: Outcomes of an

Undergraduate Education

To describe the use of exploratory factor analysis our case study will

explore the validity of an annual survey of graduating seniors. The Office of

Institutional Research at a small private college annually distributes an exit

survey to graduating seniors. This instrument consists of a question bank

with twenty-seven items that are designed to measure the outcome of an
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Table 4

Senior Survey Items

undergraduate

education from this

institution. The

text of the bank of

twenty-seven items

may be found in

Table 4. From the

perspective of the

decision makers at

the institution, the

twenty-seven items

are too detailed to

individually be of

value, thus the

researcher wants

to determine if the

items can be

validly organized

into a smaller set of

underlying factors.

While the items

were designed to

represent a variety

of different factors

that could be

outcomes of an

undergraduate

education; to date

no analysis of the

factor structure has

been completed.

Therefore, the researcher will begin by conducting an exploratory factor

analysis. Exploratory factor analysis is the appropriate statistical procedure

because the researcher wishes to explore the interrelationships among the

items for underlying patterns or factors. In addition, once the factor structure

has been established, the researcher wishes to reduce the data by creating

factor scores that represent these underlying factors. These two purposes

meet the two primary applications of exploratory factor analysis.

Before exploring our case study further, we should first review the basic

statistical assumptions of factor analysis and insure that our data meet the

requirements of the statistical procedure. Exploratory factor analysis assumes

that the observed variables are a linear combination of some underlying

hypothetical or unobservable factors. Some of these factors are assumed to

be common to two or more variables and some are assumed to be unique to

Write effectively

Communicate well orally

Acquire new skills and knowledge on my own

Think analytically and logically

Formulate creative/original ideas and solutions

Evaluate and choose between alternative courses

Lead and supervise tasks and groups of people

Relate well to people of different races, nations

Function effectively as a member of a team

Use computers for basic tasks (word processing)

Use computers for complex tasks (graphing)

Place current problems in historical prospective

Identify moral and ethical issues

Understand my abilities, my interests, and myself

Function independently without supervision

Gain in-depth knowledge of a field

Plan and execute complex projects

Read or speak a foreign language

Appreciate art, literature, music, and drama

Acquire broad knowledge in the Arts and Sciences

Develop feminist awareness

Develop awareness of social problems

Develop self-esteem /self-confidence

Form close friendships

Establish a course of action to accomplish goals

Synthesize and integrate ideas and information

Understand the role of science and technology
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each variable. In most exploratory factor analyses, the factors or unobserved

variables are assumed to be independent of one another. Some exploratory

techniques allow the researcher to account for the relationships that may

logically exist between factors; however, these relationships are more

commonly accounted for in confirmatory analyses. Finally, all variables in a

factor analysis must consist of at least an ordinal scale. Because all of the

variables used in the bank of twenty-seven items are ordinal in level of

measurement and because the variables are assumed to be a linear

combination of some set of underlying factors, the data for our case study

meet the requirements of the assumptions of exploratory factor analysis.

It is important to note that nominal data are not appropriate for the type

exploratory factor analysis described here. Novice researchers often want to

include demographic variables such as gender or ethnicity in factor analysis

to account for group differences that may exist; however, this approach is not

statistically appropriate. To determine if differences exist between genders

on these underlying factors, the researcher would first perform the factor

analysis to establish the factor structure and calculate the factor scores.

Then the factor scores would be used as the dependent variable in either a

t-test or ANOVA design to determine group differences.

The first step in completing an exploratory factor analysis is to measure

the interrelationships among the items. This step leads to extraction methods

or procedures that determine the appropriate number of factors. When initially

determining the appropriate number of factors, one factor is identified for

each variable or item. Obviously the researcher expects that the number of

useful factors will be substantially less than the total number of items. If,

however, no relationship exists between the variables, each variable would

make its own unique factor.

Multiple different statistical procedures exist by which the number of

appropriate number of factors can be identified. By default SPSS uses the

principal-components extraction method. This principal-components method

is simpler and was considered by earlier researchers to be the appropriate

method of extraction for exploratory factor analysis. Statisticians now advocate

the use of other extraction methods due to a flaw in the approach that principal-

components utilizes for extraction. Let us briefly explore this issue.

In the principal-components analysis, an inter item correlation coefficient

matrix is analyzed to explore the interrelationships between the items and

determine if the items can be grouped together to represent a smaller set of

underlying factors. The correlation (R) matrix represents the relationships

between all items and is a complete matrix with 1.0 on the principal diagonal

of the matrix. The 1.0 indicates the perfect relationship the variable has with

itself. The upper and lower elements of the matrix contain the shared

relationship between each pair of variables and because the relationships are

mutually shared the upper and lower elements are mirror images. Table 5

contains a hypothetical correlation matrix representing the relationship
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Table 5

Hypothetical Correlation Matrix
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1.000

.678

.780

.240

.189

.065

.678

1.000

.858

.380

.345

.188

.780

.858

1.000

.189

.243

.058

.240

.380

.189

1.000

.789

.834

.189

.345

.243

.789

1.000

.657

.065

.188

.058

.834

.657

1.000

between six items from a scale. This R matrix reports strong positive

relationships among items one, two, and three, as well as strong positive

relationships among items four, five and six. In addition, items one, two, and

three have weak relationships with items four, five, and six. This pattern would

be the first indication that a two-factor model might be appropriate for this data.

The problem with the principal-components extraction method is that

correlation matrix has that perfect relationship (r = 1.0) on the principal

diagonal. The problem exists because these values (r= 1.0) are used to set

the initial communalities. A communality is the extent to which an item

correlates with all other items. In principal-components extraction method

when the initial communalities are set to 1.0, then all of the variability of each

item is accounted for in the analysis. Of course, the flaw is that some of the

variability in each item is explained within the factor structure and some is

not. Statisticians have indicated that assuming all of the variability of the

items whether explained or unique can be accounted for in the analysis is

flawed and definitely should not be used in an exploratory factor model.

As a result, principal-axis factoring is suggested as the appropriate

method for factor extraction using exploratory factor analysis. In principal-

axis factor extraction, the amount of variability each item shares with all

other items is determined and this value is inserted into the R matrix replacing

the 1.0 on the diagonal of the matrix. As a result, principal-axis factoring is

only analyzing common factor variability; removing the uniqueness or

unexplained variability from the model. Thus, when reviewing initial

communalities using principal-axis factoring, as the values of the

communalities decrease more unexplained variability or uniqueness exists

within that item. As a result, lower communalities indicate that the item does

not add to the proposed factor structure. In layperson's terms, this is a problem

item not common to the proposed factor structure, but is more unique or

outside the factor structure.
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Table 6 contains the SPSS output for the initial communalities from our

case study data using both principal-components and principal-axis extraction

procedures. Using the principal-components extraction methods, one can

clearly see that all of the initial communalities are set to 1.0, indicating the

flawed assumption that the model explains all of the variance of each item.

Reviewing the initial communalities using principal axis factor extraction,

one will notice all of the items have initial communalities substantially less

than 1.0. The items with the lowest communalities include: read or speak a

foreign language, use computers for basic tasks, and use computers for

complex tasks. These items do not add to the proposed factor structure. If

the researcher wanted to shorten the bank of twenty-seven items, these

items could be considered for deletion or if the items were unclear, the

researcher may wish to consider rewording the items. On the other hand,

just because the communalities are low, does not mean that the item should

automatically be removed. Because these items appear to be clear and logical,

we will retain them in our analysis. Later on in our case we will consider other

criteria for revising or removing items.

While principal-components analysis is not suggested as a factor

extraction method and principal-axis factoring is suggested for all the reasons

cited above, other extraction methods are also available. Two of the other

more commonly used extraction methods are the generalized least-squares

method and the maximum likelihood method. The generalized least squares

factor extraction method minimizes the sum of the squared differences

between the observed and reproduced correlation matrices. A reproduced

correlation matrix shows the predicted pattern of relationships between the

items when the factor analysis solution is assumed to be correct. Thus,

when the factor structure is supported by the data, the reproduced correlations

will be close to the observed values. In the generalized least squares extraction

method, correlations are weighted by the inverse of their uniqueness, so that

variables with high uniqueness are given less weight than those with low

uniqueness. The maximum-likelihood factor extraction method produces

parameter estimates most likely to have produced the observed correlation

matrix if the sample is from a multivariate normal distribution. The correlations

are also weighted by the inverse of the uniqueness of the variables, and an

iterative algorithm is employed. The main advantage of these extraction

methods over principal-axis factoring is that these extraction methods can

be used to produce a goodness-of-fit test for the analysis. A goodness-of-fit

test is used to test the significance of the model. This test can be calculated

when these extraction procedures are used because each of these procedures

creates parameter estimates that represent the proposed model (e.g.,

reproduced correlation matrix), which the observed data can be tested against

(i.e., goodness of fit). Thus, the goodness-of-fit test indicates whether or not

the proposed factor analysis model fit the data.
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Communalities

Table 6

SPSS Output: Case Study Communalities
Communalities

Write effectively

Communicate well orally

Acquire new skills and knowledge on my own

Think analytically and logically

Formulate creative/ original ideas and solutions

Evaluate and choose between alternative courses

Lead and supervise tasks and groups of people

Relate well to people of different races, nations

Function effectively as a member of a team

Use computers for basic tasks (word processing)

Use computers for complex tasks (graphing)

Place current problems in historical prospective

Identify moral and ethical issues

Understand myself, my abilities, interests

Function independently without supervision

Gain in-depth knowlegde of a field

Plan and execute complex projects

Read or speak a foreign language

Appreciate art, literature, music, drama

Acquire broad knowledge in the Arts and Sciences

Develop feminist awarenenss

Develop awareness of social problems

Develop self-esteem /self-confidence

Form close friendships

Establish a course of action to accomplish goals

Synthesize and integrate ideas and information

Understand the role of science and technology

Initial

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

Extraction

.453

.437

.488

.555

.541

.538

.712

.480

.671

.545

.667

.539

.564

.609

.548

.345

.484

.634

.602

.483

.597

.685

.626

.592

.572

.523

.591

Write effectively

Communicate well orally

Acquire new skills and knowledge on my own

Think analytically and logically

Formulate creative / original ideas and solutions

Evaluate and choose between alternative courses

Lead and supervise tasks and groups of people

Relate well to people of different races, nations

Function effectively as a member of a team

Use computers for basic tasks (word processing)

Use computers for complex tasks (graphing)

Place current problems in historical prospective

Identify moral and ethical issues

Understand myself, my abilities, interests

Function independently without supervision

Gain in-depth knowiegde of a field

Plan and execute complex projects

Read or speak a foreign language

Appreciate art, literature, music, drama

Acquire broad knowledge in the Arts and Sciences

Develop feminist awarenenss

Develop awareness of social problems

Develop self-esteem /self-confidence

Form close friendships

Establish a course of action to accomplish goals

Synthesize and integrate ideas and information

Understand the role of science and technology

Initial

.366

.377

.412

.396

.462

.443

.412

.347

.408

.256

.254

.331

.440

.461

.418

.298

.408

.153

.320

.309

.353

.496

.535

.329

.536

.522

.435

Extraction

.361

.369

.401

.459

.489

.467

.623

.367

.486

.266

.383

.352

.464

.535

.446

.248

.409

.181

.547

.342

.369

.643

.593

.398

.537

.493

.525

Extraction Method: Principal Component Analysis.
Extraction Method: Principal Axis Factorina.



As we continue with our case study we have employed principal-axis

factoring and the extraction procedure has extracted twenty-seven factors,

one for each of the twenty-seven items. Now we need to determine if the

number factors that explain a substantial amount of the total variance is

significantly less than twenty-seven. To complete the extraction process,

eigenvalues are calculated and interpreted for each factor. Eigenvalues

represent the amount of variance in the data that is explained by the factor

with which it is associated. Eigenvalues have common characteristics. First,

in principal-axis factor extraction, the factors are extracted in order by the

amount of variance they explain. Therefore, the first factor will have the highest

eigenvalue, the second the next highest, through to the last factor and

eigenvalue, which will explain the least amount of variance. Second, the first

few factors generally explain the majority of the variance with the last few

explaining only a very small proportion of variance. Table 7 contains the SPSS

output for our eigenvalues using the principal-axis factor extraction method.

In this table, the above describe characteristics are visible. The first panel

lists the initial eigenvalues for all twenty-seven items. The first factor most

definitely explains the largest amount of the variability (30.78%). From the

initial extraction, the first six factors explain over 55% of the total variance

with the remaining twenty-one factors explain the remaining 45% of the

variance.

Determining the optimal number of factors to extract is not a

straightforward task because the decision is ultimately subjective. Several

criteria exist for determining the number of factors to be extracted, but these

are just empirical guidelines rather than an exact quantitative solution. One

such guideline is the eigen-one or Kaiser-Guttman rule. This rule instructs

the researcher to keep only those factors whose eigenvalues are greater

than 1.0 and discard the rest. The rationale for choosing the value of 1.0 is

that a factor must account for variance at least as large as the variance of a

single standardized variable. Remember, standardized variables have a mean

of zero and a standard deviation and variance of 1.0. While this rule is generally

accepted, some statisticians have indicated that the eigen-one rule is still

somewhat arbitrary and that the researcher should be driven by theory when

determining the appropriate number of factors to extract. Another way to

determine the number of useful factors is visually with a scree plot. Eigenvalues

are plotted on the Y or vertical axis of the scree plot and the factors are

plotted on the horizontal or X-axis. The scree plot can be used to help

determine the optimal number of factors or components to retain in the solution,

as the scree plot should form the intersection of two lines. Factors on the

initial steep line of the plot should be retained and factors on the scree, which

is the gradual trailing line, should be eliminated. Figure 7 contains the scree

plot for our case study data. Although the intersection of the two lines is not

clear, the scree is identifiable. Because our analysis is not driven by any

specific theory or model and our scree plot is not clear, we will apply the

eigen-one rule to our case study data.
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Table 7

SPSS Output: Case Study Eigenvalues

Total Variance Explained

Factor

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Initial Eigenvalues

Total

8.311

1.859

1.556

1.252

1.095

1.007

.977

.905

.795

.769

.718

.686

.668

.632

.580

.567

.537

.518

.468

.453

.437

.425

.403

.376

.372

.333

.301

% of Variance

30.783

6.885

5.762

4.638

4.054

3.731

3.619

3.352

2.946

2.850

2.661

2.540

2.475

2.342

2.147

2.098

1.987

1.920

1.734

1.679

1.618

1.575

1.491

1.392

1.376

1.233

1.115

Cumulative %

30.783

37.667

43.430

48.067

52.121

55.852

59.471

62.823

65.769

68.618

71.279

73.819

76.293

78.636

80.782

82.881

84.868

86.788

88.521

90.201

91.819

93.393

94.884

96.276

97.652

98.885

100.000

Extractbn Sums of Squared Loadings

Total

7.774

1.315

.998

.648

.537

.483

% of Variance

28.793

4.871

3.695

2.399

1.989

1.788

Cumulative %

28.793

33.664

37.359

39.758

41.746

43.535

Rotation Sums of Squared Loadings

Total

3.880

2.043

1.901

1.501

1.303

1.127

% of Variance

14.369

7.568

7.040

5.558

4.825

4.176

Cumulative %

14.369

21.936

28.976

34.535

39.359

43.535

Extractbn Method: Principal Axis Factoring.



Figure 7

Scree Plot
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Factor Number

Applying the eigen-one rule leaves us with a total of six extracted factors.

Given the extracted number of factors, the eigenvalues are then recalculated

based on the extracted factors only. The second panel in Table 7 displays

these values. In this panel, we have only the six extracted factors. If we had

used principal components extraction, the values for the initial and extracted

eigenvalues would be the same. Because, we used principal-axis extraction

these values will not be identical to the initial eigenvalues. Extraction methods

other than principal-components generally produce eigenvalues smaller than

the initial values, due to errors in measurement.

After the number of meaningful factors has been determined, the

researcher must begin to interpret the factor structure. To interpret the factor

structure and place meaning to the factors or constructs that have been

established, a factor matrix is calculated. Table 8 contains the initial factor

matrix for our case study data. This matrix identifies the relationships between

the variables and the factors. In general, this matrix reads like a correlation

matrix and the elements of the matrix (i.e., factor loadings) are similar in

structure and value to correlation coefficients. As a general rule, factor loadings

of .40 or greater (either positive or negative) indicate that the item is associated

with that factor. Before, interpreting this initial factor matrix, we must be

aware of some general problems with this initial factor matrix. Three problems

exist with this initial factor structure. As stated earlier, the first factor explains
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Table 8

SPSS Output: Initial Factor Matrix

Factor Matrix3

Write effectively

Communicate well orally

Acquire new skills and knowledge on my own

Think analytically and logically

Formulate creative / original ideas and solutions

Evaluate and choose between alternative courses

Lead and supervise tasks and groups of people

Relate well to people of different races, nations

Function effectively as a member of a team

Use computers for basic tasks (word processing)

Use computers for complex tasks (graphing)

Place current problems in historical prospective

Identify moral and ethical issues

Understand myself, my abilities, interests

Function independently without supervision

Gain in-depth knowlegde of a field

Plan and execute complex projects

Read or speack a foreign language

Appreciate art, literature, music, drama

Acquire broad knowledge in the Arts and Sciences

Develop feminist awarenenss

Develop awareness of social problems

Develop self-esteem /self-confidence

Form close friendships

Establish a course of action to accomplish goals

Synthesize and integrate ideas and information

Understand the role of science and technology

Factor

1

.523

.581

.558

.541

.632

.631

.520

.517

.524

.379

.206

.479

.593

.634

.620

.434

.570

.230

.462

.444

.380

.574

.716

.473

.717

.661

.509

2

-.033

.042

.174

.193

.117

.098

.106

-.146

.065

.135

.409

-.244

-.246

-.229

.044

.169

.256

-.097

-.277

.084

-.428

-.439

-.155

-.150

.083

.149

.431

3

-.274

-.076

-.232

-.279

-.202

.046

.453

.277

.410

.208

.238

-.114

.025

.031

.048

-.172

-.133

-.104

-.179

-.104

-.019

.075

.063

.205

.027

-.133

.060

4

-.048

-.112

-.074

-.129

-.152

-.163

-.151

.008

-.039

.171

.293

.031

.074

-.166

-.041

.020

.017

.236

.296

.332

.123

.147

-.075

-.092

-.076

-.049

.269

5

.094

-.091

-.015

.164

.038

.067

.001

.027

.062

-.004

.136

.156

.215

-.189

-.209

.028

-.015

-.202

-.276

-.101

.158

.281

-.134

-.232

-.047

.083

.017

6

.020

.051

.024

-.086

.099

.162

.338

-.034

.183

-.177

-.112

.158

.010

-.128

-.110

-.013

.036

.107

.246

.076

-.036

-.121

-.170

-.219

-.087

-.081

-.060

CM

Extraction Method: Principal Axis Factoring.

a. 6 factors extracted. 17 iterations required.



the most amount of variance and as a result most of the variables will have at

least some relationship with this first factor. Thus, this factor becomes very

generalized and difficult to interpret. Second, many factors may be bipolar. A

bipolar factor is one in which both significant positive and negative loadings

exist. A negative loading is like a negative correlation coefficient. Often negative

loadings or relationships may be found that are due to the actual values in

the data. Bipolar factors can, however, create negative loadings that cannot

be interpreted logically from the data. Finally, because of the first factor being

a general factor, many variables may load on more than one factor, creating

double factor loadings. While this complexity is not a problem statistically,

the question of whether it adds needlessly to the complexity of the factor

structure arises.

Table 9 contains the initial factor matrix that has been sorted by size

and only factor loadings of .40 or greater are printed. Using these options

makes identification of the problems with the initial matrix easier. In this

table, examples of the problems described above are visible. The first factor

is most definitely a general factor. All items except four have factor loadings

above .40 on this factor. The only items that do not load on this first factor

are: use computers for basic tasks, develop a feminist awareness, use

computers for complex tasks, and read or speak a foreign language. Three

items have double factor loadings (high loadings on two factors). Those three

items are: function effectively as a team, lead and supervise tasks and groups

of people, and understand the role of science and technology. In addition the

item, develop awareness of social problems, revealed a bipolar double factor

loading. Additionally, the item, develop a feminist awareness, has a negative

factor loading on factor two. To address these three issues statisticians

suggest that the initial factor matrix not be analyzed and that a rotation

procedure be completed prior to interpreting the factor structure. Three

common procedures exist for rotation: orthogonal, oblique, and varimax. Each

method varies in how the rotation is accomplished. Let us briefly review the

concept of rotation and these rotation procedures before returning to the

analysis of our case study.

Rotation is a process that is used to simplify the interpretation of a

factor analysis. The concepts and principles of rotation can most clearly be

explained by reviewing a factor plot. A factor plot of two hypothetical factors

is shown in Figure 8. The axes lines represent the values of the factor

loadings for two factors. The two factors are placed at right angles to one

another, because in the first stage of exploratory factor analysis the factors

are assumed to be unrelated. The Xs represent the variables and are plotted

where the factor loadings for the two factors intersect. In this figure, many

items have high factor loadings on both factors. Negative factor loadings

appear for some variables on factor 1. Factor analysis starts with the original

axes from the extraction process and then applies a mathematical rotation

that simplifies the relationships between the items and the factors. How that
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Table 9

SPSS Output: Initial Factor Matrix - Sorted and Suppressed

Factor Matrix3

Establish a course of action to accomplish goals

Develop setf-esteem /self-confidence

Synthesize and integrate ideas and information

Understand myself, my abilities, interests

Formulate creative / original ideas and solutions

Evaluate and choose between alternative courses

Function independently without supervision

Identify moral and ethical issues

Communicate well orally

Develop awareness of social problems

Plan and execute complex projects

Acquire new skills and knowledge on my own

Think analytically and logically

Function effectively as a member of a team

Write effectively

Lead and supervise tasks and groups of people

Relate well to people of different races, nations

Understand the role of science and technology

Place current problems in historical prospective

Form close friendships

Appreciate art, literature, music, drama

Acquire broad knowledge in the Arts and Sciences

Gain in-depth knowiegde of a field

Use computers for basic tasks (word processing)

Develop feminist awarenenss

Use computers for complex tasks (graphing)

Read or speack a foreign language

Factor

1

.717

.716

.661

.634

.632

.631

.620

.593

.581

.574

.570

.558

.541

.524

.523

.520

.517

.509

.479

.473

.462

.444

.434

2

-.439

.431

-.428

.409

3

.410

.453

4 5 6

Extraction Method: Principal Axis Factoring,

a. 6 factors extracted. 17 iterations required.



Figure 8

Initial Relationship Between Hypothetical

Two-Factor Structure and Items

Factor 1

+1.0

-- .60

-.80 -.40

. X X

Factor 2

.40

"■ -.60

-■ -1.0

mathematical rotation is

performed varies based

upon the rotation

procedure.

Orthogonal rotation

is easiest of the three

methods to describe

conceptually; however,

this method is the most

limited in terms of its

application. Orthogonal

rotation has a restriction

that states that factors

may only be rotated in

such a manner that the

factors are kept at right

angles to each other. This

restriction follows the

assumption that no

association exists

between the factors. For

many applications within

institutional research the

factors are logically

correlated, thus the

limited application of this

procedure.

Orthogonal rotation

can best be described

graphically. As orthogonal

rotation is completed, the

factors are now rotated or

shifted to improve the

relationships between the

variables and each factor

while maintaining the right

angle restriction.

Graphically the orthogonal

rotation procedure is illustrated in Figure 9. The rotation procedure increased

the identification of the uniqueness of each factor and reduced the number of

items with negative and double factor loadings.

Using oblique rotation, factors are rotated without maintaining the right

angle restrictions. This procedure allows the researcher to account for the

Figure 9

Orthogonal Rotation
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relationships that may logically exist between the factors. The closer the

rotation angle is to zero, the higher the correlation between the factors. In

fact, if the rotation angle were zero, the two factors would have merged, as

the lines would have fallen on top of one another on our factor plot. As the

rotation angle approaches 90°, the relationship between the factors nears

zero and approximates the orthogonal rotation method. Again, oblique rotation

can best be described visually. Figure 10 displays an oblique rotation between

these same two factors and items. In this figure notice that the right angle

restriction is no longer held; however, only a slight relationship is expected

between the two factors, as the factors are still at about an 80° angle. In

exploratory factor analysis, little is known about the relationship between the

factors, which can limit the usefulness of this procedure.

Our third rotation procedure is varimax rotation. Although varimax is an

orthogonal rotation, which also assumes no relationship between the factors,

the procedure is designed
Figure 10 t0 maximize the amount

Oblique Rotation variance uniquely

accounted for by each

factor. The varimax

method minimizes the

number of variables that

have high loadings on each

factor and as a result

simplifies the interpretation

of the factors. This

procedure is a commonly

applied technique. After all,

shouldn't explaining the

maximum amount of

variability in the scores by

each factor and simplifying

the factor structure be a

priority? For our case study we will use varimax rotation.

Table 10 contains the rotated factor component matrix for our case

data. The table has again been sorted by size and had factor loadings less

than .40 suppressed. In contrast to Table 9 with the initial component matrix,

one can see that for our data the majority of the problems with the initial

matrix have been addressed. When interpreting a factor matrix, the researcher

needs to try to find the common thread or theme that items loading (i.e., have

factor loadings greater than .40) on that factor have in common. The thread

or theme is then interpreted as the name of the factor or latent variable.

Before naming the factors many researchers support applying the

principles of Thurstone's simple structure. Thurstone's simple structure is a

set of general guidelines that help the researcher interpret a rotated factor
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matrix. Thurstone's guidelines tell the researcher to select items that relate

strongly to the proposed factor (i.e., factor loadings of .40 or above), and to

delete or drop items that are double loaded (i.e., .40 or above on more than

one factor). Next, items that are unique or do not load on any factor (i.e., all

factor loadings are below .40) are deleted. Finally, items that load high on a

factor that was not the proposed factor for that item are deleted. As one can

see by these guidelines, the term simple structure implies that items should

be related to only one factor. Some statisticians acknowledge that factor

complexity is inevitable and that many factor structures may have items that

should logically be related to more than one factor. As a result, some

researchers will maintain items with double factor loadings as long as the

items would logically belong to both factors. In cases when greater than .05

percent difference exists between the two factor loadings, the item can be

considered as primarily belonging to the factor with the higher factor loading.

Our rotated factor matrix (Table 10) does not reveal any items with

double loadings, nor are there any items that do not load on any factor. While

we did not have a predetermined factor structure, logical relationships do

exist between these items, and a review of the rotated factor matrix does not

reveal any items that should be deleted for loading on an illogical factor. Our

data support a clean 6-factor structure.

If the researcher had difficulty interpreting the rotated factor matrix and

problems were revealed, then reviewing the extracted communalities may be

helpful in determining the fate of some items. Remember, the communalities

represent the extent to which an item correlates with all other items. The

extracted communalities can be calculated from either the initial or rotated

factor matrix. The extracted communality for any one item is calculated by

squaring the rotated factor loadings and then summing those squared values

across all factors. Table 11 displays the calculations that would be done to

the rotated factor matrix to create the extracted communalities for our case

study. Remember, the factor loadings represent the relationship shared

between the item and the factor, thus the square of the relationship represents

the amount of explained variability. This concept parallels the relationship

between a correlation coefficient and the coefficient of determination or

R-squared. Therefore, the lower the communality the more unexplained

variability or uniqueness exists within that item. So when an item is presenting

problems within the factor structure and the communality for that item is low,

the researcher should most definitely consider revising or removing the item

from the survey.

Now we must try to name these factors or latent variables. The naming

of the factors is the responsibility of the researcher. Naming of the factors is

the most important and difficult stage in the interpretation of factor analysis.

When naming the factors consider items that have higher factor loadings as

being more representative of the factor than items with lower factor loadings.

In some cases, the researcher has some predetermined factor structure
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used in this phase. Remember, when a proposed factor structure does exist,

the researcher would eventually want to complete a confirmatory factor

analysis. Later in this case study, we will briefly introduce confirmatory factor

analysis. Because our case study does not have a predetermined factor

structure, we are looking for the common thread, theme, or construct shared

by items with large factor loadings for each of our extracted factors. When

naming factors, do not do so in isolation. Be sure that it is done in the

context of the research and organization. Get input from respected colleagues

and relevant campus groups as factors are named. The most important

element in naming
Table 12

Factors and Associated

Senior Survey Items

Intellectual

Think analytically and logically

Formulate creative / original ideas and solutions

Synthesize and integrate ideas and information

Acquire new skills and knowledge on my own

Plan and execute complex projects

Write effectively

Establish a course of action to accomplish goals

Evaluate and choose between alternative courses

Communicate well orally

Gain in-depth knowledge of a field

Moral

Develop awareness of social problems

Develop feminist awareness

Identify moral and ethical issues

Place current problems in historical prospective

Self-Development - Self-Awareness

Form close friendships

Understand my abilities, my interests, and myself

Develop self-esteem /self-confidence

Function independently without supervision

Leadership

Lead and supervise tasks and groups of people

Function effectively as a member of a team

Technology

Use computers for complex tasks (graphing)

Understand the role of science and technology

Use computers for basic tasks (word processing)

Humanities

Appreciate art, literature, music, and drama

Acquire broad knowledge in the Arts and Sciences

Read or speak a foreign language

the factors is that

when the factor and

the items that make

up each factor is

reported, individuals

must agree that the

items fit under this

theme or construct.

Name recognition is

what the researcher is

seeking.

After

discussion and

consultation with

various

constituencies at our

institution, these

factors were named

Intellectual, Moral,

Self-Development ~

Self-Awareness,

Leadership,

Technology, and

Humanities,

respectively. Table 12

lists the factor name

and the items that

comprise each factor.

It is important to

respect the naming

process. At a

different institution,

the names of these

factors might be
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different, yet the content would remain the same. Remember, name recognition

and acceptance of the logic or face validity of the factor structure is the

ultimate objective.

As we complete our factor analysis, we should go back and take one

final look at Table 7, which contains the eigenvalues for our case study. The

third panel of the table contains the eigenvalues or summary of explained

variability for the final rotated factor structure. The third panel is titled rotated

sum ofsquares loadings. This label is appropriate because the eigenvalues

are calculated by squaring the rotated factor loadings (Table 11) and then

summing those squared values across all items. Again, remember that the

factor loadings represent the relationship shared between the item and the

factor and that the square of the relationship represents the amount of explained

variability. When reviewing these values, one will notice that the variance

accounted for by each of the factors in the rotated structure does not equal

the variance accounted for by the extracted matrix. This change is due to

the rotation procedures that were applied. After all, the goal of all rotation

procedures is to make the relationships between the factors and the items

clearer. While the distribution of explained variability is adjusted across factors,

the cumulative or total amount of explained variability will remain the same

from the extracted to the rotated factor structure. In our case study, the total

amount of the variability of the scores across the twenty-seven items that is

explained by both the extracted and rotated factor structures equals 43.5%.

Once the factor analysis is complete and the factors have been named,

the researcher may want to use these factors in reporting data from the

survey and explore for potential differences in these factors across various

subgroups in the sample. To do so the researcher should create factor

scores. Factor scores quantify individual scores for each participant on each

of the factors or latent variables. Several methods exist for creating factor

scores. Two common methods for creating factor scores that are available in

most statistical packages are regression method and Anderson Rubin method.

The regression method creates predicted scores for the factors that have a

mean of zero and a variance equal to the squared multiple correlations between

the estimated factor scores and the true factor values. These scores may be

correlated even when factors are orthogonal. If the researcher is interested in

how each item contributes to the calculation of the factor scores you can

review the factor score coefficient matrix. The factor score coefficient matrix

shows the values used to compute factor scores for each case. For each

case, the factor score can be computed by multiplying standardized variable

values (z-scores) by the factor score coefficients and then summing these

values across the factors. Each item is weighted by the coefficient to represent

its contribution to the factor. For principal-component models, these procedures

are followed and exact component scores are calculated. For other extraction

methods, standard regression scores cannot be computed. Table 13 contains

the factor structure coefficients for our case study. The coefficients are used
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Table 13

SPSS Output: Factor Structure Coefficients

Factor Score Coefficient Matrix

Write effectively

Communicate well orally

Acquire new skills and knowledge on my own

Think analytically and logically

Formulate creative / original ideas and solutions

Evaluate and choose between alternative courses

Lead and supervise tasks and groups of people

Relate well to people of different races, nations

Function effectively as a member of a team

Use computers for basic tasks (word processing)

Use computers for complex tasks (graphing)

Place current problems in historical prospective

Identify moral and ethical issues

Understand myself, my abilities, interests

Function independently without supervision

Gain in-depth knowlegde of a field

Plan and execute complex projects

Read or speack a foreign language

Appreciate art, literature, music, drama

Acquire broad knowledge in the Arts and Sciences

Develop feminist awarenenss

Develop awareness of social problems

Develop self-esteem /self-confidence

Form close friendships

Establish a course of action to accomplish goals

Synthesize and integrate ideas and information

Understand the role of science and technology

Factor

1

.175

.104

.202

.298

.262

.142

-.094

-.102

-.097

-.079

-.072

.062

.003

-.003

.004

.113

.152

-.047

-.098

-.020

-.059

-.133

-.023

-.111

093

.197

.024

2

.068

-.073

-.071

.033

-.040

-.011

-.092

.092

.030

.011

.019

.178

.287

-.049

-.134

-.020

-.081

-.036

-.032

-.019

.273

.652

-.009

-.074

-.052

.020

-.081

3

-.101

049

-.045

-.096

-.109

-.097

-.110

.105

-.043

.106

-.065

-.184

-.120

.402

.273

-.049

-.062

-.007

-.082

-.084

-.048

-.076

.418

.410

.173

-.014

-.070

4

-.057

.043

-.036

-.122

.060

.220

.743

.086

.368

-.062

-.035

.073

025

-.053

-.050

-.050

-009

-.020

037

-051

-.049

-.119

-.108

-.062

-.021

-.085

-075

5

-.091

-.096

-.051

-.018

-.154

-.106

-.086

.067

.079

.246

.463

-.110

.028

-.180

.030

.036

.061

.011

-.123

.161

-.016

.144

-.023

.011

.047

.059

.483

6

-.005

.041

.019

-.199

-.027

-.069

-.006

-.044

-.044

-.016

-.040

.061

-.046

-.008

.065

.014

.056

.273

.755

.310

.023

-.153

-.025

-.026

-.065

-.109

.112

CM

Extraction Method: Principal Axis Factoring.

Rotation Method: Varimax with Kaiser Normalization.

Factor Scores Method: Anderson-Rubin.



to compute the factor scores for each case by multiplying variable values by

the factor score coefficients.

The problem in interpreting these regression factor scores is that they

are not on a standardized scale and even when an orthogonal rotation is

used the factor scores may be correlated. The Anderson Rubin method

ensures orthogonality of the estimated factor scores and the scores produced

are standardized with a mean of zero, a standard deviation of one. Thus, this

method makes interpretation of these scores easier as the factor scores can

be interpreted as z-scores, ranging from approximately -3.0 to +3.0. Because

of the complexity of dealing with data on a standardized scale, some

researchers shy away from using factor scores and would rather create scale

scores based upon the mean of the raw scores for the items associated with

each factor. Two problems exist in using this approach. First, this approach

should not be used if items used in the factor analysis are based upon different

response scales. The second problem is that by using the mean of the items,

the researcher is assuming that each item contributes equally to the construct

or factor. By reviewing the factor loadings we know that this assumption is

flawed. Therefore, factor scores have less error in estimating the construct

or latent variable and are preferable. The researcher may now use these

factor scores to determine if differences exist in these six factors between

any subgroups (e.g., gender) in the population.

So what do we know from our case study? At this point we have

determined that our data support a six-factor model. The factor structure

revealed was relatively clean and free of double loadings and interpretation

problems. We can now use this factor structure to discuss the findings from

our survey data. We may organize descriptive statistics using the factor

structure and/or we could further explore our data using the factor scores to

determine if differences exist across various sub-groups on the factor scores.

What should we do with our factor analysis as we move forward with this

survey? The next logical step would be to use the survey again the following

year and subsequently run confirmatory factor analysis to confirm the factor

structure and test the fit of the model to this new set of data. Our next

section of this chapter will introduce confirmatory factor analysis and structural

equation modeling.

Introduction to Structural Equation Modeling

Structural equation modeling is a statistical approach to testing

hypotheses about the relationships between observed or measured variables

and latent variables (Hoyle, 1995). As we begin to explore structural equation

modeling, let us again begin by reviewing the theoretical and logical

associations that exist between structural equation modeling and techniques

presented in prior chapters and earlier sections of this chapter. Next, we will

describe this technique in depth by briefly extending our prior case study

application of factor analysis. We will end this section with a summary of the
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interpretation of our case study and a discussion of the implications for

structural equation modeling in institutional research.

Statistical and Theoretical Background

Three types of structural equation models (SEM) are most applicable

to institutional research. The first type of structural equation model is path

analysis. Some statisticians do not consider path analysis to be a form of

structural equation modeling, because path analysis consists of only observed

variables. In contrast, others, (myself included), do believe that path analysis

should be considered within the frame of structural equation models for two

important reasons. Most importantly, path analysis uses the same underlying

principles of model specification and model fitting as other structural equation

models. Secondly, path analysis is an important part of the historical

development of SEM and most researchers use SEM software to analyze

path models.

The second type of structural equation model is Confirmatory Factor

Analysis. As discussed in our prior section, confirmatory factor analysis is

an extension of exploratory factor analysis used to confirm a hypothesized

factor structure. Remember, confirmatory factor analysis differs from

exploratory factor analysis in that for a confirmatory analysis, the specific

relationships between the items and the factors are confirmed. Certain items

are hypothesized to be associated only with given factors; thus not all items

have arrows to all factors (Figure 6). As a result, confirmatory factor analysis

truly fits our definition of structural equation modeling as the researcher is

testing a hypothesis about the relationships between observed or measured

variables and latent variables.

The third type of structural equation model is a structural regression

model. Structural regression models, also commonly referred to as structural

equation models, can be viewed as a logical extension of confirmatory factor

analysis. While confirmatory factor analysis confirms the hypothesized

relationships between observed and latent variables, structural regression

models allow the researcher to additionally explore the relationships between

the latent variables. Figure 11 logically extends our confirmatory factor analysis

found in Figure 6 by proposing a third factor and suggesting the relationships

between the three factors. By exploring this figure we can see the difference

between confirmatory factor analysis and structural regression models. Our

model now consists of two components: measurement model(s) and structural

model. In this analysis, we have two measurement models and one structural

model. The two measurement models represent the two confirmatory factor

analyses that would establish the measurement of our latent variables and

the structural model identifies the relationships between the latent variables.

Whether running path analysis, confirmatory factor analysis, or full

structural regression models, we see both similarities and differences between

SEM and other standard statistical procedures such as correlation, multiple
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Figure 11

Hypothetical Structural Equation Model

CFA SM CFA

regression, and ANOVA. Before we explore the essence of SEM through a

brief example of confirmatory factor analysis, let us summarize some

similarities and differences. Hopefully through our prior discussion of path

analysis, the logical link that exists between correlation, regression, and

path analysis were evident. In fact, some statisticians (Hoyle, 1995; Raykov

& Marcoulides, 2000; Schumacker & Lomax, 1996) have indicated that

standard linear models are special instances of the general structural equation

model. One similarity between these techniques is, that like these standard

statistical techniques, statistical tests associated with SEM are valid only if

the assumptions regarding the observed data are met. For SEM, the most

common assumptions are independence of observations and multivariate

normality of observed data. Another important similarity between SEM and

standard statistical techniques is that neither approach offers a statistical

test of causality. SEM in its early years was sometimes referred to as

causal modeling because these techniques enjoy some advantage over more

restrictive standard models. In this regard, none of these techniques including

SEM can be used to imply causality, as this is a condition only established

through logic, strong theory, or methodological strategies.

SEM differs from standard statistical approaches like regression and

ANOVA in three important ways. First, unlike these techniques, SEM requires

the researcher to formally specify the model to be tested. Hoyle (1995) best

summarized this distinction, "unlike ANOVA, which, as typically used,

evaluates main effect and interaction hypotheses by default and multiple

regression analysis, which permits specification only of direct effects on a
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single outcome, SEM offers no default model specification and places relative

few limits on what types of relations can be specified" (p. 14). A second and

commonly cited advantage of SEM over standard statistical techniques is

the ability of SEM to test the relationships between latent variables. Of the

standard statistical procedures, only exploratory factor analysis can be used

to estimate latent variables and none of these techniques can be used to test

the relationships among latent variables. The third distinction between SEM

and standard statistical techniques is really a weakness of SEM; the ambiguity

and debate over the statistical tests of the fit of structural equation models

compared to the relatively straightforward and commonly accepted inferential

tests associated with techniques such as ANOVA and regression.

When testing any structural equation model using any of the specialized

structural equation software (e.g., AMOS; Arbuckle, 2003; LISREL, Joreskog

& Sorbom, 1999), the researcher must complete several steps. First, the

researcher must specify the model to be tested. Model specification is a key

part of structural equation modeling. The researcher must carefully think

about his or her data and hypothesize the relationships associated with each

variable in the model. I cannot stress enough that theory and logic are

paramount in SEM. As discussed earlier in our discussion of path analysis

and exploratory factor analysis, path diagrams are used to display the model

specifications.

The next phase in the analysis is determining the model parameters to

be estimated. Model parameters reflect those aspects of a model that are

unknown to the researcher at the beginning of the analysis, yet are needed

to test the model. Parameter is, of course, a generic term that refers to some

characteristic of a whole population (e.g., the population mean). In SEM, the

model parameters are the unknown aspects of the hypothesized or specified

model that are estimated by the distributions of the observed variables in the

model. In other words, they are the elements that will be estimated from the

sample covariance or correlation matrix using the specialized computer

software. These parameters are estimated in such a way that they can be

tested against a model that would emulate the specified model. The

parameters may be estimated using one of several estimation procedures,

which we will discuss in our case study example. The goal of these estimation

procedures or numerical routines is basically to minimize the fit of the data to

the specified model. These numerical routines then proceed in a consecutive

or iterative manner to select values for model parameters in such a way that

at each step or iteration the distance between the population value and the

sample value is reduced.

Finally, the process ends when no further improvement in the fit function

can be achieved, or no decrease occurs in the difference between the population

and sample values. At that point in time, final parameter estimates are

produced and various fit statistics are calculated. The task of the researcher
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is then to interpret those parameters and fit statistics to determine if the

specified model fit the data. Remember, even in those cases where model

parameters are logical and supportive of the model and fit statistics support

the model, the researcher may not conclude that this model is the "best or

only model." Rather, the researcher should conclude that this is a logical

model supported by the data, but other models that have yet to be theorized

or tested could exist and in fact may be superior to the tested model. Now,

let us specifically review these steps using our prior case study example.

Case III: Confirming the Factor Structure from the Annual Survey of

Graduating Students

For illustrative purposes, we are going to continue with our second

case study example, but we are going to reduce the number of factors and

items in our model. When first working with SEM models smaller and more

parsimonious models are easier for the researcher. As we will see in this

case study and as is the case in the real world, more complicated and less

parsimonious models are necessary to describe human behavior. Therefore,

the main role of this case study is for illustrative purposes. Also, we must

again point out that we would not run the confirmatory factor analysis on the

same data sets that we ran the exploratory factor analysis. To run the analysis

in this manner would be redundant and would almost insure a fit to the model.

As a result, we would need a new sample from a subsequent data collection.

For the purposes of this case study, we will explore a subset of our

Senior Survey with three factors. The factors and the items selected are

illustrated on Figure 12. For this model, the three factors include, intellectual,

leadership and technology. The factors are associated with five, three and

three items, respectively. Before we discuss the model parameters to be

estimated, some important basic path diagram guidelines need to be reviewed.

Latent variables are our hypothetical constructs or factors. In the path diagram,

circles denote these latent variables. Observed or measured variables are

denoted in the path diagram as rectangles and are the items from our senior

survey. Remember, the lines or paths that are drawn between the factors and

items start at the factor because it is the hypothetical construct that is thought

to influence or drive the response of the individual to the item, not the other

way around. The path diagram also displays the errors in measurement for

each of the items and each of the latent variables. Now we have specified our
confirmatory factor analysis.

The next step in the analysis is to determine the model parameters to

be estimated. Almost all of the specialized SEM software (e.g., AMOS;

Arbuckle, 2003; LISREL, Joreskog & Sorbom, 1999) will take the specified

model, determine the parameters to be estimated and present a summary of

the model parameters. The summary of our model parameters for our case

study may be found in Table 14. It is important that the researcher check the

model parameters to determine that the model has been correctly specified.
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Figure 12

Path Diagram for Confirmatory

Factor Analysis

Bentler (1995)

summarized six rules that

can be used to determine

the parameters of the

model. Rule 1 states that

all the variances of the

exogeneous variables are

model parameters. In

addition, Rule 1 also

states that the variances

of the error terms

associated with the latent

variables are model

parameters. Although in

my model, the error terms

have been standardized or

set to have a mean of zero

and a standard deviation

of one. As a result for our

case study rule 1 states

that we have eleven

variances that are model

parameters to be

estimated and three fixed

variances associated with

our factors, therefore, we

have a total of fourteen

variances in our parameter

summary. Rule 2 states

that all covariances

between exogeneous

variables are model

parameters. Remember,

these covariances would

be indicated by double-

headed curved arrows

between our observed

variables. In confirmatory

factor analysis we do not

estimate the covariances

between the items, so we

do not have any covariances as model parameters. Rule 3 states that all

factor loadings are parameters to be estimated, thus we have eleven factor

loadings to be calculated, one for each observed variable. Rule 4 states that
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Table 14

AMOS Output: Model Summary

Parameter summary (Group number 1)

Weights Covariances Variances Means Intercepts Total

' Fixed"! 14 0 3 0 0 17
Labeled [ 0 0 0 0 0 0

\ Unlabeled | 11 0 11 0 11 33

Total 25 0 14 0 11 50

all regression coefficients are parameters to be estimated. This rule includes

both the weight and the intercept for all latent variables including error terms.

Although it is important to note that the error terms have been standardized

with a mean of zero and a standard deviation of one; the weights are listed

under fixed and the constants for these terms are not model parameters.

Also it is important to note that rule 4 can be thought of as a special case of

rule 3, as factor loadings are really a coefficient or weight between the item

and the factor.

Rule 5 states that variances and covariance between the endogenous

variables are not model parameters. This rule is due to the fact that these

estimates are in fact determined by other model parameters. In any case,

our confirmatory factor analysis does not specify any covariances between

the endogenous variables as we have no curved double headed arrows between

the latent variables. Rule 6 states that for each latent variable included in the

model the metric of its scale must be specified. This rule is commonly met

by scaling the latent variable to one of the observed variables. When the

results of an exploratory factor analysis are available, set the path between

the latent variable and the observed variable with the highest factor loading to

1.0. This is another reason why three of our weights or coefficients are fixed.

Thus, we end up with fifty model parameters, seventeen of which are fixed

and associated with our fourteen error terms (fourteen weights or coefficients

and three variances), and thirty-three of which are free to be estimated and

associated with our eleven items (eleven weights, eleven intercepts, and

eleven variances).

Now that we know we have correctly identified our model we are ready

to move to a discussion of the estimation method and model identification.

Four main estimation methods are commonly used by specialized SEM

software. The four methods are unweighted least squares, maximum likelihood,

generalized least squares, and weighted least squares. Each of the

procedures is based upon some form of the sum of the squared difference

between the corresponding elements of the observed variance-covariance

matrix to the reproduced variance-covariance matrix. Recall from our earlier

discussion of fit statistics, a reproduced variance-covariance matrix contains

the variances and covariances that are emulated or implied by the model. An
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unweighted least square estimation method is the unweighted sum of the

squared differences between each of the corresponding elements of the

sample variance-covariance matrix and the reproduced matrix. The maximum

likelihood method or generalized least squares are commonly applied when

the data meet the assumption of multivariate normality. The weighted or

asymptotically distribution-free estimation method should be used when

assumptions of normality are not met, although large sample sizes are required

for this application. The maximum likelihood method is more commonly used

and has been shown to handle slight variations in the assumption of normality.

Maximum likelihood is the procedure commonly used as the default estimation

procedure in most SEM software programs. As a result it is the estimation

procedure we will use in our case study.

Using the estimation procedure the iterative process is implemented

until such time as the process has converged and the final model is identified.

Remember, the iterative process ends when no further improvement in the fit

function can be achieved or no decrease occurs in the difference between the

elements of the sample variance-covariance and the reproduced variance-

covariance matrices. Before moving on to discuss the interpretation of the

parameter estimates and fit statistics for our case study, it is important to

spend a few moments discussing parameter and model identification. A model

parameter may be unidentified if not enough empirical information exists to

estimate the specific parameter. A model that contains even one unidentified

parameter cannot be interpreted, even though some elements of the model

may be logical and useful. So what does having an unidentified parameter

mean? Having an unidentified parameter implies that no method exists to

determine a unique value for the estimate. It is much like having two unknowns

in one algebraic equation. Given that SEM models are attempting to estimate

on an element-by-element basis the difference between the sample variance-

covariance matrix and the reproduced matrix, it is quite possible that with

some data and models given parameters may have many solutions. In these

cases unidentified parameters exist and the model is unidentified. Sometimes

unidentified models are the result of misspecification. Recall the six rules for

determining the model parameters. When any one of these rules is violated,

an unidentified model will result.

Although it is important to state that following these rules is a necessary,

but not sufficient requirement for having an identified model. In other words, a

researcher may follow all the model specification rules and still the data do

not allow for the identification of a given parameter. Normally, if a proposed

model is carefully conceptualized, the chances of unidentified parameters

are minimal. Often this message occurs when the researcher has failed to

set the scale on a latent variable (i.e., Rule 6) and thus is easily fixed within

the SEM software program. When a more serious version of under identification

occurs the researcher may need to totally reconsider the model or consider

additional data collection. It is important to stress again the importance of

theory and logic in SEM.
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Figure 13

Path Diagram with

Parameter Estimates

Now that the model from

our case study has been

identified and the parameters

and fit statistics have been

determined, we must proceed

to analyze the output from our

analysis. The parameter

estimates are commonly

presented on the path

diagram. Figure 13 presents

the path diagram with the

parameter estimates from our

case study. From this figure

we can see that all of the

factor loadings are above .40,

indicating a strong

association between each of

the latent variables and the

observed items. Given that we

conducted an exploratory

factor analysis, we would

have expected this finding

with our cross validation

sample. Another statistic

presented on the path

diagram is the squared

multiple correlation between

each latent and observed

variable. These values, which

are presented on the top of

each of the observed

variables, are strong, ranging

from .24 to .61. To interpret

our highest squared multiple

correlation between the factor

of leadership and the item,

lead and supervise tasks and

groups of people, we could

state that the factor leadership explain approximately 61 percent of the

variance of the item. In other words, the error variance of item, lead and

supervise tasks and groups of people, is approximately 39.2 percent. Thus,

these values also support the logic of our model. So now we must turn to the

evaluation of the fit statistics for our model.
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Again, the concept of the evaluation of the fit of the model is complex.

As mentioned earlier, many fit statistics exist and the debate over the correct

interpretation of fit statistics in the literature is prolific (Hu & Bentler, 1999).

Given the applied nature of this text, we will only interpret the three basic fit

statistics, which were discussed in the context of path analysis: Chi-Square,

Normed Fit Index (NFI) and Root Mean Square Error of Approximation

(RMSEA). The fit statistics for the confirmatory factor analysis defined in our

case study may be found in Table 15. Let's start with the chi-square goodness-

of-fit statistic, which compares a fitted variance-covariance matrix to the

observed variance-covariance matrix on an element-by-element basis.

Remember, the chi square test is a test of whether or not these residuals are

significantly different from zero and, therefore, the residuals should be small

and not significantly different from zero to indicate a fit of the model to the

data. Unfortunately, the chi-square for our model is quite large and significant

(X2 = 568.52, p < .00). We can again compare our chi-square for our model

to an independence model and see that the chi-square for our model is less

than the independence model (X2 = 1858.89, p < .00), which is a minimal

expectation of a reasonable fit. However, the NFI statistic for our case study

(NFI= .697), which is a ratio of the above describe comparison, does not fall

within the desired range (> .90). Thus, we have another fit statistic that does

not support the fit of our model.

The RMSEA is our third fit statistic. Remember, a value of about 0.08 or

less for the RMSEA would indicate a reasonable error of approximation and

would support the fit of the model to the data. Values greater than 0.1 for the

RMSEA do not support model fit. We see more bad news for our model, as

the RMSEA for our case study is .137. One may ask, why do we present a

case study with fit statistics that do not support the model? The answer is

that in practice many researchers will find that their initial models have poor

fit statistics. Also remember that while our case study comes from an initial

exploratory factor analysis, we have simplified and reduced the model for

illustrative purposes. In fact, when I run the full model on the data the

parameter estimates and fit statistics do improve, although the fit statistics

are still contradictory.

So what can we draw from this last case study? Given the abbreviated

nature of our model, the practical implications from our case are outweighed

by the illustrative values. My hope is that those of you new to Structural

Equation Modeling have been presented with an overview of the technique

and an example applied within institutional research. One may be wondering

outside of confirmatory factor analysis what role does SEM have in institutional

research? I truly think that SEM will become more prevalent in research on

the outcomes of higher education and institutional research. A growing need

exists for us to measure and define the relationships between our observed

variables and the more interesting outcome measures that are latent variables

(e.g., intellectual growth, leadership, social awareness). Again as we venture
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Table 15

AMOS Output: Fit Statistics Confirmatory Factor Analysis

Model Fit Summary

CMIN

Model

Default model

Saturated model

Independence model \

aseline Comparisons

Model

Default model

Saturated model

Independence model

MSEA

Model

Default model

Independence model

NPAR

33

77

11

NFI

Deltal

.694

1.000

.000

CMIN DF

568.520 44

1858

RFI

rhol

.541

.000

\ RMSEA

.137

.207

.000 0

.895 66

IFI

Delta2

.711

1.000

.000

LO 90

.127

.199

P

.000

.000

TLI

rho2

.561

.000

HI 90

.147

.215

CMIN/DF

12.921

28.165

CFI

.707 :

1.000

.000

PCLOSE

.000

.000

into such areas, I must once again stress the need for theory and logic to

guide our research and our practices. It is this process that will move our

research from confirmatory models into structural regression models, where

we will test the relationships between our latent variables. As I look at my

confirmatory model, I can think of proposing some relationships (e.g., does

intellectual growth influence leadership), but I will leave that discussion to

texts at the next level.
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