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Abstract
Social network analysis (SNA), with 
its distinct perspective on studying 
relations and its exceptional capability 
to visualize data, should be embraced 
by institutional researchers as a 
promising new research methodology 
complementary to inferential and 
exploratory statistics. This article 
introduces SNA through discussion of 
three analytical studies on topics highly 
relevant to institutional research (IR): 
(1) double-majors, (2) gatekeeping 
courses, and (3) STEM pipeline leaking. 
The unique approach of SNA in 
exploring, analyzing, and presenting 
data has great potential for advancing 
IR’s analytical capacity.

INTRODUCTION
Institutional research (IR) professionals 
frequently adopt new analytical tools 
and research methodologies. This has 
allowed more sophisticated studies 
to be carried out that better inform 
institutions’ policy making, which leads 
in the long term to students being 

better served. Traditional descriptive 
and inferential statistics, from simple 
frequencies and cross-tabulations, 
to the whole family of regressions, 
to more-advanced techniques such 
as survival analysis and structural 
equation modeling, have sufficiently 
fulfilled a large part of IR’s analytical 
functionality. At the same time, the 
large amount of data found in IR 
and the nature of IR research that 
emphasizes identification of patterns, 
predictions, and possible interventions, 
coupled with high-capacity software 
such as SAS, have made exploratory 
statistics a new frontier in IR. The recent 
interest in data mining and predictive 
modeling exemplifies this shift.

However, a missing piece of IR analytics 
is the study of relations. Traditional 
statistical methods assume the 
observation independence—that is, 
they assume that observations of a 
study are not related to one another, 
but rather can be independently 
examined by various internal and 
external attributes (Chen & Zhu, 
2001). The observations in higher 
education settings, however, often 
are not independent. The activities 
of higher education and the people 
involved are relational and interactive 
in nature. Examples of these activities 
include co-authorship of scholarly 

publications, faculty collaboration 
on research projects, peer influence 
among students with specific ethnic 
or social backgrounds, mentorship 
between faculty members and 
students, formation of learning 
communities among students with 
shared academic interests, and so forth. 
Relations also extend beyond people: 
for example, majors within a discipline 
are interrelated by overlapping course 
offerings, colleges and universities are 
interrelated by students transferring 
in and out, and states form a network 
through out-of-state student 
enrollment.

Such networks of relations are 
extensive in higher education, but few 
studies have addressed their dynamics 
and implications, partly because of 
the methodological limitations of 
inferential and exploratory statistics. 
As Wasserman and Faust (1994) in their 
classic book of social network analysis 
(SNA) stated, “The focus on relations, 
and the patterns of relations, requires 
a set of methods and analytic concepts 
that are distinct from the methods of 
traditional statistics and data analysis” 
(p. 3). The inadequate understanding 
of relations and interactions among 
the various entities in higher education 
calls for the addition of network 
analysis into IR’s analytical paradigm.
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At the intersection of inferential 
statistics, exploratory statistics, and 
network analysis is data visualization—
or the representation of data through 
graphical means. However, “data 
visualization . . . involves more than 
just representing data in a graphical 
form (instead of using a table). The 
information behind the data should 
also be revealed in a good display; 
the graphic should aid the readers or 
viewers in seeing the structure in the 
data” (Chen, Härdle, & Unwin, 2008, 
p. 6). As the well-known statistician 
and pioneer in data visualization 
Edward Tufte stated, “At their best, 
graphics are instruments for reasoning 
about quantitative information. . . . Of 
all methods for analyzing and 
communicating statistical information, 
well-designed data graphics are usually 
the simplest and at the same time the 
most powerful” (Tufte, 2001, p. 13).

Founded on graph theory, network 
analysis is exceptionally well developed 
in generating meaningful and 
intriguing visual representations of 
data. While charts and graphs are 
integral components of inferential and 
exploratory statistics, graphics is at the 
heart of network analysis. It is the way 
that an underlying network structure 
can be uncovered, while at the 
same time providing the vocabulary 
through which network properties 
can be described. At a time when 
effective communication of findings 
to institutions’ administrators and 
other constituents is more important 
than ever to further data-driven 
and research-based policy making, 
network analysis, with its expertise in 
data visualization, can be especially 
beneficial to IR.

This article introduces SNA to the IR 
community. As a well-established 
method that has been widely used in 
social sciences, SNA can contribute 
a great deal to IR with its unique 
perspective on relations and its power 
in visual presentation. The following 
will (1) introduce basic concepts in 
SNA, (2) present three studies that 
used SNA, and (3) discuss issues key to 
successfully applying SNA in IR.

SOCIAL NETWORK 
ANALYSIS AND ITS 
BASIC CONCEPTS
SNA is inherently an interdisciplinary 
endeavor that uses social psychology, 
sociology, statistics, and graph 
theory. Beginning in the 1970s, 
the empirical study of various 
networks has played an increasingly 
important role in the social sciences. 
Among many of its applications, 
SNA has been used to understand 
the diffusion of innovations, the 
communication of news, the spread 
of diseases, the culture and structure 
of social organizations and business 
corporations, the formation of political 
views and affiliations, and so forth 
(Carrington, Scott, & Wasserman, 
2005). More recently SNA has gained 
significant use in studying online 
communities and social media such as 
Facebook and Twitter.

The complicated mathematical 
background of SNA is beyond the 
scope of this article. However, it would 
be helpful to explain in simple terms 
several basic yet essential concepts 
used in the examples of analytical 
works described in this paper: vertice 
or node, edge, degree, directed and 

undirected graph, weight, modularity, 
and centrality.

Borrowed from graph theory, the 
interconnected objects in SNA 
are represented by mathematical 
abstractions called vertices (more 
commonly called nodes), while the 
links that connect some pairs of nodes 
are called edges. The number of edges 
incident upon a node is defined as 
degree. Typically, a graph is depicted 
in diagrammatic form as a set of dots 
for the nodes, joined by lines or curves 
for the edges. When applied to a study, 
nodes represent the observations 
of a study, and edges represent the 
relations between the observations 
of a study. If the relations are initiated 
from certain observations to others, 
the edges would be represented 
with arrows from the initiators to the 
receivers, and the graph would be 
directed. Conversely, if the relations 
between two observations are mutual, 
the edge would be represented with 
a line segment connecting the two, 
and the graph would be undirected. 
A graph is weighted if a value or a 
weight is assigned to each edge. 
Depending on the problem at hand, 
such weights might represent a diverse 
set of attributes of the relationship 
(Hanneman & Riddle, 2005).

For demonstration, Figure 1 is 
a weighted undirected graph 
representing a hypothetical network 
of faculty collaboration. Nodes 1–10 
are faculty members. Edges exist 
between those who collaborated 
on grant proposals, and weights on 
the edges denote the number of 
grant proposals that the two faculty 
members submitted together. As seen 
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in the graph, Faculty 2 worked with 
Faculty 1 once, with Faculty 5 once, 
and with Faculty 3 three times on 
grant proposals; the node representing 
Faculty 2, therefore, has a degree of 
three and a weighted degree of five.

Modularity is one important measure 
of the network structure. It divides 
a network into modules, also called 
groups, clusters, or communities. 
Networks possessing community 
structures function differently from 
average networks, so identification 
of such community structures can 
have substantial importance in 
understanding the dynamics and 
properties of the network. The 
mathematical idea of the modularity 

Figure 1. Demonstration of Basic Concepts in Social Network Analysis

measure is to compute the difference 
between the number of edges falling 
within groups and the expected 
number of edges in an equivalent 
network where edges are placed at 
random (Newman & Girvan, 2004). 
Large differences would indicate nodes 
being densely interconnected while 
being only sparsely connected with the 
rest of the network—in other words, 
forming modules. Network analysis 
software can generate this measure 
and partition the network by its 
underlying community structures.

Centrality is another important 
measure, examining the relative 
importance of a node within a graph. 
There are three main types of centrality: 

degree, closeness, and betweenness. 
Degree centrality is defined as the 
number of edges that a node has. 
The nodes having higher degrees are 
related to other nodes, and therefore 
are at positions in the network that 
are more central. Closeness centrality 
emphasizes the distance of a node 
to all other nodes in the network. 
Betweenness centrality focuses on the 
position of a node between pairs of 
nodes. The higher betweenness of a 
node means more nodes depend on it 
to make connections with other nodes. 
Centrality can be evaluated with a set 
of statistics, such as Freeman Degree 
Centrality, Geodesic Path Distances, 
Eigenvector Centrality, Hierarchical 
Reduction, and so forth (Hanneman 
& Riddle, 2005). This article does not 
attempt to elaborate on details of these 
statistics; the readers are encouraged 
to obtain more information (e.g., 
Carrington et al., 2005; Chen et al., 
2008; Tufte, 1990, 2001; Wasserman 
& Faust, 1994). The output of the 
above-mentioned statistics for the 
hypothetical network in Figure 1 is 
provided in Table 1 (next page).

For SNA, however, the statistics are 
often not the end product. Unlike 
inferential and exploratory statistics, 
the graphs in SNA are at the core 
of explaining and understanding 
findings, as the relational statistics 
are incorporated into graphs through 
the visualization process.  Figure 
1 shows two modules; Module A, 
consisting of faculty members 1 
through5 and faculty member 10, 
and Module B, consisting of faculty 
members 6 through9. Members of 
each module worked more frequently 
within rather than across the modules. 
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Faculty 5 worked mainly with faculty 
1 through4, but also worked once 
with faculty6 and once with faculty 
7, thus bridging the two modules. 
A closer look at the departmental 
affiliation shows that faculty in Module 
A are from the biology department, 
and faculty in Module B are from the 
psychology department. Faculty5, 
a professor in biology, has research 
interests in neuroscience and has 
actively collaborated with professors in 
psychology. Faculty 10 is a statistician 
from the mathematics department 
who built a collegial relationship with 
Faculty 4 and who was once asked to 
work with him on a grant.

It can also be observed that Faculty 5 is 
at the center of the network in all three 
centrality measurements. Faculty 5 is 
identified as an active researcher in the 
two fields of biology and psychology 
by the high degree centrality (shown 
in Table 1 as Degree of 6 and Weighted 

Degree of 7), as a good collaborator 
with all other researchers by the high 
closeness centrality (shown in Table 
1 as 0.75), and as the key person for 
promoting interdisciplinarity between 
the two fields by the high betweenness 
centrality (shown in Table 1 as 0.65).

APPLICATION OF 
SOCIAL NETWORK 
ANALYSIS IN THREE 
STUDIES
This section will describe the 
application of   SNA through three 
examples of small-scale analytical work: 
(1) a study of double-majors that used 
the modularity measure of SNA to 
reveal the connectivity among majors 
that can inform  student advising; 
(2) a study of gatekeeping courses 
that used the measure of centrality to 
identify major-specific  and  general-
education courses that  students 

failed before dropping out of  the 
institution; and (3) a study of STEM 
(science, technology, engineering, 
and mathematics) pipeline leaking 
that examined students who started 
in STEM majors but subsequently 
graduated in non-STEM majors.

The three studies were conducted 
using the open source software Gephi 
(http://gephi.org). As a tool specifically 
developed for network analysis, Gephi 
has at its core a set of algorithms, called 
layouts, that detect and generate 
graphical representations of network 
structures. The layout ForceAtlas, for 
example, probably the most used 
force-directed layout, simulates 
a physical system in which nodes 
repulse each other like magnets, while 
edges attract their nodes like springs. 
These forces create a movement that 
eventually converges to a balanced 
state of spatialization of the nodes 
and edges, revealing the structure and 

Id Label Modularity 
Class

Degree Weighted 
Degree

Closeness 
Centrality

Betweenness 
Centrality

Eigenvector 
Centrality

1 Faculty 1 0 2 3 0.47 0.00 0.44

2 Faculty 2 0 3 5 0.50 0.01 0.57

3 Faculty 3 0 3 6 0.53 0.03 0.59

4 Faculty 4 0 3 4 0.53 0.22 0.49

5 Faculty 5 0 6 7 0.75 0.65 1.00

6 Faculty 6 1 4 6 0.60 0.18 0.71

7 Faculty 7 1 4 7 0.60 0.18 0.71

8 Faculty 8 1 2 3 0.41 0.00 0.40

9 Faculty 9 1 2 4 0.41 0.00 0.40

10 Faculty 10 0 1 1 0.36 0.00 0.14

Table 1. Demonstration of Basic Relational Statistics Output in Social Network Analysis
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features of the network. Layouts have 
their specialties that suit networks of 
different sizes and emphasize different 
features. Layouts such as ForceAtlas2 
and OpenOrd work with big networks, 
Circular and Radial Axis emphasize 
ranking, and GeoLayout uses latitude/
longitude coordinates to visualize 
geographical networks.

The software also provides calculations 
of relational statistics unique to 
network analysis. Measures for 
modularity and centrality, among 
other statistics, can be generated with 
relative ease. The statistics can then 
be used in visualization; for example, 
the computed modularity allows 
partitioning of nodes into groups and 
reveals the community structure of 
the network. The statistics can also be 
saved into the data set and used in 
other statistical analysis; for example, 
the eigenvalue for centrality of each 
observation can be a new predictive 
variable in a regression model.

Graphs generated through Gephi are 
the main tool used to present findings 
of the three studies. Main features 
are shown, while detailed institution-
specific figures that could have been 
shown as labels accompanying the 
nodes and edges are removed from 
the graphs.

Study 1: Double-Majors
Many college students concurrently 
pursue studies in two or more majors. 
Faculty and student advisors may 
anecdotally know some of the popular 
combinations of majors in their 
discipline; IR analysts, however, would 
want to approach the phenomenon of 
double-major with empirical evidence.

Five years (2009–13) of undergraduate 
degree data were compiled to ensure 
adequate sample size and to minimize 
fluctuations over the years. The data 
file contained majors, combinations 
of double-majors, and the number 
of students awarded degrees in each 
double-major. After applying the 
layout algorithm of ForceAtlas, the 
partitioning based on the statistics 
of modularity, and the filtering that 
eliminated majors with fewer than 
five students graduating with double-
majors every year over the study 
period, a network structure emerged 
with more than 1,500 baccalaureate 
graduates in two of the approximately 
40 or (Figure 2).

Majors clustered into groups based on 
their connections with one another 
after the modularity measure was 

employed. Three areas of study 
appeared prominently in the graph 
where double-majors concentrated—
economics/business, arts/humanities, 
and biological sciences/psychology. 
Four free-standing yet strongly tied 
pairs of majors were also identified—
international affairs/political science, 
housing/consumer economics, exercise 
and sport science/athletic training, and 
consumer foods/dietetics. Clustering 
of majors into groups provides an 
empirical verification that double-
majors occur most often within 
disciplines where connectivity between 
course offerings, degree requirements, 
and administrative procedures 
facilitates the pursuit of double-majors.
The font size of the major titles is 
proportionate to the weighted degree 
of the major—that is, the number 
of students in this major who also 

Figure 2. Double-Major Combinations of Bachelor’s Degree Recipients
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Figure 3. Failing Courses and Last Major of Undergraduate Dropouts

graduated with a degree in another 
major. It can be seen that finance, 
psychology, biology, international 
business, and economics had the most 
students graduating with double-
majors. The thickness of the edges 
is proportionate to the number of 
students taking on the corresponding 
pair of majors. It is then observed that 
over the five-year period psychology/
biology, housing/consumer economics, 
international affairs/political science, 
finance/international business, and 
finance/economics were the top 
five most popular double-major 
combinations.

As Edward Tufte (2001) stated, “Modern 
data graphics can do much more than 
simply substitute for small statistical 
tables” (p. 9). The visual presentation 
in Figure 2 of the double-major data 
not only conveys information in a 
more coherent and succinct fashion 
than a tabular presentation, but also 
reveals the data at multiple levels not 
conveniently available in table form. It 
provides a broad overview of the areas 
of study within which double-majors 
tend to form, as well as the details of 
specific majors and major combinations. 
As groupings of majors surface through 
the modularity measure of SNA, more 
insights emerge. . These patterns 
of double-majors that graduates 
have successfully followed can serve 
as evidence for student advisors 
in their discussions with students 
contemplating taking on another major 
of study.  University administrators 
might want to strengthen existing 
partnerships or explore new linkages 
between majors to enrich students’ 
educational experiences and promote 
their future employability.

Study 2: Gatekeeping Courses
Entry-level gatekeeping courses have 
been known to pose challenges to 
students and to potentially lead to 
attrition, particularly in STEM majors. 
It is very important for institutions 
focused on retaining and engaging 
students to help those students 
succeed in courses that most frequently 
serve as gatekeepers. Identification of 
these courses is inevitably the first step.

This study tracked students from four 
first-time, full-time freshmen cohorts 
(Fall 2004–Fall 2007) to identify 
dropouts—those who had neither 
graduated nor remained enrolled six 
years after their initial matriculation. 
For those dropouts who had failing 
grades on record, the failed courses 
and the majors that they last enrolled 
in before leaving the institution were 
compiled. Over 1,500 students from 17 
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majors with 42 potential gatekeeping 
courses were included in the study.

Figure 3 is the visual representation 
of relations between failed courses, 
indicated by green nodes, and last 
majors, indicated by red nodes. Plotting 
was based on the degree centrality 
of the majors in this course-major 
network. The star network at the center 
of the graph made it clear that most 
of the dropouts left the institution 
with an unspecified major—in other 
words, they left early in their college 
life before declaring a major—and 
the many courses surrounding the 
unspecified major were the failed 
courses that could be potential 
hurdles to student retention. Among 
them, five introductory courses—
Precalculus (MATH1113), American 
Government (POLS1101), Elementary 
Psychology (PSYC1101), Freshman 
Chemistry I (CHEM1211), and Basic 
Concepts in Biology (BIOL1103)—have 
prominent edges in the graph.  The 
thickness of the edges between these 
courses and the unspecified major 
is proportionate to the number of 
students with an unspecified major 
who failed these courses. Furthermore, 
these five courses were actually the 
most challenging for students from 
all majors, as indicated by the size 
of their title in the figure.  The size is 
proportionate to the total number 
of students who failed these courses 
regardless of their major.

The university also lost students in the 
other red-node majors—computer 
science, prebusiness, psychology, 
biology, and so forth. These majors 
are located on the periphery of the 
graph because of their relatively low 

centrality in this course-major network. 
Failing of certain major-specific courses 
was potentially related to dropping 
out of these majors. For example, 
two foundation courses in computer 
science, Systems Programming 
[CSCI1730] and Discrete Mathematics 
for Computer Science [CSCI2610], 
were probably weeding out students.  
An introductory accounting course, 
Principles of Accounting I [ACCT2101] 
and an introductory economics 
course, Principles of Macroeconomics 
[ECON2105], were stumbling blocks 
for some students in prebusiness.  The 
introductory statistics course [STAT2000] 
might have been a source of struggle for 
some students with sociology, speech 
communication, international affairs, 
and psychology majors.

One of the principles that Tufte (1990) 
suggested for the good practice of 
statistical graphics is “enhancing 
the dimensionality and density of 
portrayals of information” (p. 9). 
Figure 3 combined three dimensions 
of information—the gatekeeping 
courses, the majors that lost students, 
and the relationship between majors 
and courses—in one graph, while 
the same information in tabular form 
would have been cumbersome and 
lacked clarity. Instead of providing 
an isolated view of students and 
courses confined to a specific major, 
Figure 3 allows examination of more 
comprehensive course-taking patterns 
across majors. More importantly, 
the graph vividly points to possible 
directions for further investigation 
and action. University administrators 
might want to evaluate teaching 
and learning in the five introductory 
courses revealed as gatekeepers in the 

graph. Perhaps factors like a large-
lecture form of pedagogy, one-way 
passive learning, or an emphasis 
on memorization over critical 
thinking, might have contributed 
to the students’ failings. Strategies 
could then be developed to engage 
both the faculty and the students 
to change these gatekeepers into 
gateways of student success. The 
department head of biology might 
learn from the graph that for students 
intending to major in biology, 
Freshman Chemistry I (CHEM1211) 
and II (CHEM1212) together with 
Principles of Biology I (BIOL1107) were 
the most challenging courses, and 
that for students who succeeded in 
these courses and officially enrolled 
in biology as a major, the next set of 
courses in the sequence—Modern 
Organic Chemistry I (CHEM2211) 
and II (CHEM2212), and Principles 
of Biology II (BIOL1108)—were road 
blocks. A long-term plan focusing on 
building a solid foundation for further 
study in this major may be needed. 
Curriculum and pedagogy designed 
with intentional sequencing may help 
ensure adequate preparation and 
smooth transition of students for each 
section of the course sequence.

Study 3: STEM Pipeline Leaking
Government, educators, and industry 
leaders have long been concerned 
about STEM pipeline leaking, where 
students depart from  academic and 
career paths in science, technology, 
engineering, and mathmatics. 
According to the BusinessHigher 
Education Forum (2010), only 4 percent 
of the 4 million ninth-graders in the 
United States in 2001  would be STEM 
college graduates by 2011. This study 
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attempted to revealan aspect of the 
leakage along the STEM pipelineby 
identifying undergraduate students 
in STEM majors who changed their 
academic pursuit to non-STEM majors.

Students from five first-time full-time 
freshmen cohorts (Fall 2003–Fall 2007) 
were tracked through fiscal year 2013 
for bachelor’s degree attainment. 
Those who first declared a major in 
STEM (based on the National Science 
Foundation definition) and later 
graduated in non-STEM majors, and 
whose major GPA was 3.0 or above 
when leaving STEM, constituted the 
group for this study.

A directed graph using the Circular 
Layout was built to show the migration 
between majors. For focus and clarity, 
only STEM majors with ten or more 
students in the five freshmen cohorts 
who later graduated in non-STEM 
majors were retained.  The results in 
Figure 4 represent about 800 students 
in eight starting STEM majors who 
graduated in ten non-STEM fields. The 
blue nodes on the left side represent 
starting STEM majors, sorted and sized 
by the number of students leaving for 
any non-STEM major. The yellow nodes 
on the right side represent ending non-
STEM majors classified into disciplines 
by the first two digits of the major CIP 
code, sorted and sized by the number 
of students transferring in from all 
STEM majors. The thickness of the edge 
between two nodes is proportionate 
to the number of students changing 
majors.

Figure 4 is mainly descriptive. By 
mapping the migration of students, 
the status of retention and persistence 

in STEM majors at the institution is 
illuminated. The graph does not intend 
to address the many facets of the 
issue, but rather to show the non-
STEM destinations for STEM majors 
who were in solid academic standing 
in their STEM major. These students 
might intend to pursue postgraduate 
professional programs, or plan for 
careers other than basic research, or 
simply want to explore studies beyond 
STEM. Instead of a divisive view of 
STEM versus non-STEM, the linkages in 
the graph present an opportunity for 
cooperation between the two fields.

A major-minor partnership can be 
one way to bridge the two fields. 
Possibilities exist for interdisciplinary 
collaboration between computer 
science and management information 
systems in business; mathematics and 
econometrics or finance in business; 
biology and dietetics study or nutrition 

science in family and consumer 
sciences; and so on.. Certificate 
programs can be another option—for 
example, a certificate program in 
science journalism could be an option 
for students in biology or chemistry 
who are also interested in journalism; 
a program in math education could be 
an option for mathematics students 
who have an interest in education; or a 
program in health promotion could be 
a good fit for biology students aspiring 
to a career in health professions. If the 
demanding workload of a STEM major 
prohibits formal pursuit of another 
area of study, an area of emphasis 
that blends in courses from a relevant 
non-STEM major may meet students’ 
needs. Other possibilities may include 
joint projects or the incorporation of 
governmental, societal, or cultural 
implications of science and technology 
into the teaching of STEM.

Figure 4. STEM Major Students Graduating in Non-STEM Majors
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Figure 4 illustrates many opportunities 
to bridge the gap between STEM 
and non-STEM, and suggests the 
need for an orchestrated effort from 
departments on both sides to foster a 
campus-wide culture change geared 
to encourage students to stay in STEM 
without missing opportunities present 
in non-STEM fields.

DISCUSSIONS
In addition to the Gephi software that 
was used to conduct the above three 
studies, other open source software 
for network analysis include UCINET, 
Pajek, and R.  All offer functions such as 
importing and filtering data, visualizing 
and spatializing network structures, 
generating relational statistics, and 
manipulating and exporting graphic 
presentations (Bastian, Heymann, & 
Jacomy, 2009). Their flexible interfaces 
and interactive ways of analyzing data 
make them accessible to IR analysts of 
different levels.

There are two issues critical to the 
successful application of SNA in 
IR. First is an open mind that sees 
relations and tries the network 
approach in conducting research on 
topics old and new. Network analysis, 
especially, allows new leverage 
for answering traditional research 
questions in IR. Relational statistics 
generated in SNA can provide 
alternative explanations to traditional 
theories, or can explain additional 
variance when they are being entered 
into established models. Studies that 
provide good examples of SNA include 
work investigating social network and 
college students’ sense of community 
(Dawson, 2008); student networking 

in an online learning environment 
(Dawson, 2010); peer influence on 
student persistence and retention 
(Eckles & Stradley, 2012; Thomas, 
2000); the extent to which size and 
density of a student’s social network 
predict academic achievement 
(Fletcher & Tienda, 2009; Skahill, 
2003); and the effect of roommate 
and friend network on racial attitude 
and cultural competency (Levin, van 
Laar, & Sidanius, 2003; van Laar, Levin, 
Sinclair, & Sidanius, 2005); faculty 
co-authorship and co-citation (Girvan 
& Newman, 2002; Mählck & Persson, 
2000; Otte & Rousseau, 2002; Perianes-
Rodríguez, Olmeda-Gómez, & Moya-
Anegón, 2010). However, few studies 
have been done on the formation of 
network, or on the university social 
network as a whole in which the 
student network, the faculty network, 
and the staff network interact. More 
robust and varied studies on SNA 
are needed to enrich the literature in 
higher education in general and in IR 
in particular.

The second issue is how to visually 
present the data with proper 
functionality and aesthetic form. 
Excellence in data visualization 
lies in the delivery of patterns and 
their implications uncovered from a 
data set in an intuitive, informative, 
and productive way, to improve 
understanding and encourage 
audience engagement (Friedman, 
2008). The various network analysis 
software products provide highly 
configurable layout algorithms for 
generating graphs, and tools for 
modifying the display parameters of 
the graphs. They are readily available 
to the analyst, but only the right use 

of them can achieve balance between 
information accuracy and visual 
attractiveness, and can ultimately 
facilitate understanding of the data. 
The graph should lead the viewer 
to think about the substance and to 
see the differences, rather than be 
distracted by the graphic design. Most 
often, multiple aspects of the data 
set can be presented in one graph; a 
clear focus serving a clear explanatory 
purpose is thus important for the graph 
to be meaningful. Sometimes details 
are sacrificed to render the graph with 
clarity; tabular and verbal descriptions 
of the data set then must be closely 
integrated with the graph for full 
reporting of the findings. And above 
all, “an ill-specified model or a puny 
data set cannot be rescued by a visually 
appealing graph” (Tufte, 2001, p. 13).

SNA is not meant to replace inferential 
and exploratory statistics, but 
rather is a complement that greatly 
enriches traditional model- building 
by allowing the study of unique 
research questions concerning a 
network type of relationships. IR has 
been a relative latecomer to network 
analysis. However, as more relational 
data (e.g., institutional records, email 
corpora, online learning management 
systems, and social media Web sites) 
are collected and become more easily 
accessible, IR researchers will have 
more opportunities to apply SNA and 
thus to appreciate the unique insights 
this method offers. SNA should emerge 
as an important tool as IR increasingly 
assumes the role of a local and national 
key player in educational statistics, 
analytics, and policy making.
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