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Abstract

This article introduces generalizability theory (G-theory) to institutional research and assessment practitioners, 

and explains how it can be utilized to evaluate the reliability of assessment procedures in order to improve 

student learning outcomes. The fundamental concepts associated with G-theory are briefly discussed, 

followed by a discussion of the software needed to conduct a generalizability study (G-study) analysis. The 

article then presents a case study of a G-study analysis; this case study was conducted in order to evaluate 

the generalizability and dependability of an exam that third-year medical school students complete. The 

conclusion discusses several situations that institutional research and assessment practitioners are likely to 

encounter where G-theory can be used to evaluate and improve their assessment procedures in pursuit of 

improving student learning outcomes.
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INTRODUCTION
Few institutional research and assessment 

professionals would argue that analyzing data in 

support of improving student learning outcomes 

is not central to their mission. In fact, this “student-

focused paradigm for decision support” is explicitly 

recognized by the Association for Institutional 

Research’s (AIR) statement of aspirational practice 

(Swing & Ross, 2016, p. 3). One of the ways that 

institutional research and assessment practitioners 

can improve student learning outcomes is by 

learning new skills and data analysis techniques, 

particularly skills that will allow them to more 

effectively analyze data, and to explain the results of 

that analysis to decision-makers.

The purpose of this article is to introduce 

generalizability theory (G-theory) to a new audience, 

and to explain how it can be used to improve 

assessment procedures in pursuit of improving 

student learning outcomes. This article will first 

briefly discuss the fundamental concepts associated 

with G-theory, and then discuss the software 

necessary to conduct a G-study. The article will 

then present the results of a G-study that was 

conducted in order to evaluate the generalizability 

and dependability of an exam that third-year 

medical school students complete. Finally, the article 

concludes with a discussion of how institutional 

research and assessment practitioners can utilize 

G-theory to evaluate and improve their assessment 

procedures in pursuit of improving student learning 

outcomes.

INTRODUCTION TO 
G-THEORY
G-theory is an extension of, and builds on, classical 

test theory (CTT). In CTT, the observed measurement 

is composed of true measurement and random 

error (Brennan, 2011; Sawaki, 2012; Teker et al., 

2015; Willse, 2012). Stated more formally, in CTT 

“X = T + E, where X represents an observed score, 

T represents true score, and E represents error of 

measurement” (Willse, 2012, p. 150). As an example, 

a student’s score on an exam (X) is equal to their 

true score (T) plus any errors associated with the 

exam (E). The error term (E) includes all sources of 

error, including such things as the day of the exam, 

the time of the exam, the consistency with which 

the rater(s) are evaluating the exam, and so on. The 

primary advantage of G-theory as compared to CTT 

is that multiple sources of error can be explicitly 

identified and estimated (Bloch & Norman, 2012; 

Sawaki, 2012; Teker et al., 2015). To return to our 

example above, this means that the unique amount 

of variance that various factors associated with the 

exam (e.g., the individual case and the number of 

raters evaluating the exam) can be estimated in 

a generalizability study (G-study), which of course 

cannot be done using the CTT framework. When 

comparing the two approaches, Mushquash and 

O’Connor (2006, p. 542) stated, “G theory is a more 

encompassing, informative, and useful alternative.”

G-theory also builds on the familiar statistical 

concept of analysis of variance (ANOVA) (Sawaki, 

2012; Teker et al., 2015). In fact, the variance 

components in a G-study are typically estimated by 

fitting a random-effects ANOVA model to the data 

(Sawaki, 2012, pp. 534–535).
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Broadly speaking, conducting a G-theory analysis 

is a two-step process in which first a G-study is 

conducted, and then a dependability study (D-study) 

is conducted. As Croker et al. (1988) note, the 

purpose of the G-study is to “identify important 

sources of variation in a given set of observations 

collected under various measurement conditions” (p. 

288). In simpler terms, this means that the primary 

purpose of the G-study is to estimate the variance 

components associated with the different facets of 

the study, which would normally be treated as an 

undifferentiated error term if one were to use the 

CTT framework. Croker et al. go on to note that the 

purpose of the D-study is to “obtain information 

that could then guide the researcher in deciding 

which measurement conditions should be controlled 

and how many levels of each condition should be 

included to obtain adequate generalizability” (p. 

288). This means that, if we return to the example 

discussed above, the purpose of the D-study is to 

examine such things as how adding a rater that 

is grading some of the exams, or adding one or 

more cases, impacts the generalizability of the 

assessment.

A researcher who is considering conducting a 

G-study should be familiar with terms such as 

“facet,” “universe score,” and “dependability.” A facet 

is defined as “a systematic source of variability that 

may affect the accuracy of the generalization one 

makes” (Sawaki, 2012, p. 535). To return to our 

above example, one of the facets that may be of 

interest could be the number of raters that we are 

using to evaluate the assessment. Other examples 

of facets include the individual exam items (in our 

example, the case); an exam given on different days/

times could be a facet as well. Similarly, a universe 

score is defined as “the average score a candidate 

would have obtained across an infinite number of 

testing [sic] under measurement conditions that 

the investigator is willing to accept as exchangeable 

with one another” (pp. 534–535). This is, of course, 

very similar to the “true score” in CTT. Finally, 

dependability is defined as “the extent to which the 

generalization one makes about a given candidate’s 

universe score based on an observed test score is 

accurate” (p. 534). As discussed above, the ultimate 

goal of a G-study is to determine the dependability 

of a measurement. In other words, the goal is to 

answer a research question such as this one: “If 

student A received a score of 90 percent on an 

exam, to what extent can we be confident that 

their 90 percent is an accurate reflection of their 

knowledge and abilities?”

Another strength of G-theory is that it incorporates 

the concept of relative and absolute decisions, which 

are related to the concept of norm-referenced and 

criterion-referenced testing. In norm-referenced 

testing, which is associated with the concept of 

relative decisions, the focus is on “the extent to 

which candidates are rank-ordered consistently 

across test tasks, test forms, occasions, and so 

on” (Sawaki, 2012, p. 534). Similarly, in criterion-

referenced testing, which is associated with the 

concept of absolute decisions, the focus is on “the 

extent to which candidates are consistently classified 

into different categories (score or ability levels) 

across test forms, occasions, test tasks, and so on” 

(p. 534). The reliability index for relative decisions is 

typically referred to as the generalizability coefficient 

(Eρ2). Likewise, the index of dependability (ϕ), which 

is often called the phi coefficient, is used to make 

absolute decisions (pp. 534–535).
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SOFTWARE FOR 
CONDUCTING A G-STUDY 
Despite the fact that G-theory has been discussed in 

the literature since the 1970s (Cronbach et al., 1972), 

for many years it was used infrequently because 

one needed specialty software in order to conduct a 

G-study. Readers that are interested in the history of 

software programs for conducting G-studies, or who 

are interested in conducting a G-study in a software 

program other than Statistical Package for the Social 

Sciences (SPSS) or Statistical Analysis Software 

(SAS) are encouraged to consult Bloch and Norman 

(2012), Huebner and Lucht (2019), Mushquash and 

O’Connor (2006), or Teker et al. (2015) for further 

information.

Regardless of the software package that will be used 

to conduct the analysis, the first step in conducting 

a G-study would be to ensure that your data file is in 

univariate format. If your data file is in multivariate 

format, then the VARTOCASES command in SPSS or 

the PROC TRANSPOSE procedure in SAS can be used 

to restructure your data file (IBM, 2011; SAS Institute, 

2009). Table 1 illustrates the difference between 

univariate and multivariate data file formats.

Depending on the complexity of the design of the 

study, a G-study can be conducted in SPSS using 

the VARCOMP procedure, but the authors would 

recommend using SAS as discussed in the following 

section. For example, when using the VARCOMP 

procedure in SPSS, the highest order interaction 

term is confounded with residual error (Putka & 

McCloy, 2008), therefore the VARCOMP procedure 

obviously cannot be used to estimate the variance 

component associated with the highest order 

interaction term. The authors’ experience is that, 

when using SPSS version 25, adding the highest 

order interaction term to the model using the 

VARCOMP procedure results in an error and all 

variance components receive an estimate of “0.”

Readers that are interested in conducting a 

G-study in SPSS using the VARCOMP procedure 

are encouraged to consult the excellent discussion 

by Putka and McCloy (2008) for further details. An 

additional reference would be the SPSS syntax 

handbook available from within SPSS by selecting 

the “Help” menu, then selecting “Command Syntax 

Reference.”

Note: Adapted from Putka & McCloy (2008, p. 1).

Table 1. Multivariate vs. Univariate Format

Multivariate Format Univariate Format

Student_ID Rater 1 Score Rater 2 Score Student_ID Rater_ID Score

1 90 95 1 1 90

2 80 85 1 2 95

3 70 75 2 1 80

2 2 85
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CASE STUDY: OBJECTIVE 
STRUCTURED CLINICAL 
EXAM ANALYSIS
The purpose of this study was to evaluate the 

generalizability and dependability of an objective 

structured clinical exam (OSCE) that third-year 

medical students at a state university complete. An 

OSCE involves medical students rotating through 

a series of timed stations where they perform 

certain clinical tasks. Each station represents a 

separate medical case; the required tasks for each 

case may range from taking a patient history, to 

performing a physical exam, interpreting diagnostic 

studies or lab results, counseling a patient, and so 

forth. OSCEs often include the use of standardized 

patients (SPs), who are individuals who have been 

trained to portray patients with the particular signs 

or symptoms of a medical condition in a consistent 

manner. In some instances, due to the length of time 

it takes for all medical students to rotate through 

all OSCE cases, multiple SPs might be trained 

for the same case. Student performance at each 

station is scored using a checklist that is specific to 

the content of the relevant case. The trained SPs 

are usually the ones who also serve as raters and 

who complete the checklist for each student that 

they interact with or observe. For the purposes of 

this article, the use of the term “case” implies one 

station of an OSCE that includes the SP and the 

medical condition they are portraying. The primary 

purpose of this project was to determine how much 

of the variance on the exam was attributable to 

the student, to the case, and/or to the rater. An 

additional research question involved determining 

the overall generalizability of the assessment.

The design of the OSCE used six stations or cases, 

five raters per case (34 raters in total, meaning that 

not all raters rated each case), and 117 students. 

Based on these data, a G-study was conducted using 

the PROC HPMIXED procedure in SAS.1

The following variance components were estimated 

in this study:

•	 Student (p)

•	 Case (c)

•	 Rater (r(c))

•	 Student * Case (p * c)

•	 Student * (Rater: Case), and residual (p * (r:c))

The results of the analysis are summarized in 

table 2. The table illustrates how the variance 

components and so forth change as the number 

of cases increase from six to eleven. As the results 

demonstrate, the largest variance components 

were those associated with student * case (p * c), 

and with student * case nested within rater and the 

residual (p * (r:c)). It is of course not surprising that 

a large amount of the variance is attributable to (p * 

(r:c)), since that includes the residual, which accounts 

for all unmeasured error. However, the fact that 

33.1 percent of the variance is attributable to (p * c) 

is a promising finding. The variance associated with 

this component indicates that students are learning 

different skills across the different cases.

However, more variance is attributable to the rater 

than is attributable to either the student or the 

case. This indicates that more of the variation in 

performance on the OSCE is attributable to the 

subjective evaluation of the raters than is ideal.

 1. See appendix 1 for the SAS syntax used in this analysis.
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Table 2 also presents the results of the D-study.2 

As the table illustrates, as the OSCE is currently 

operationalized (five raters and six cases), the 

generalizability is .63 for relative interpretations3 

and .57 for absolute interpretations4. This indicates 

that the OSCE as operationalized is suitable for 

making low-stakes decisions, such as estimating 

student mastery of material in order to assign 

student grades. The generalizability of the OSCE 

could be increased to the .7 threshold needed for 

making high-stakes decisions, such as licensure 

or certification exams, for this type of assessment 

(Downing, 2004) by adding three to five additional 

cases. See figure 1 for additional details on the 

results of the D-study.

Third-Year Student OSCE

Effect

G-study 
Variance 

Component
% of 

Variance
Rater = 5, 
Case = 6

Rater = 5, 
Case = 7

Rater = 5, 
Case = 8

Rater = 5, 
Case = 9

Rater = 5, 
Case = 10

Rater = 5, 
Case = 11

Student 5.72 11.13 5.72 5.72 5.72 5.72 5.72 5.72

Case 4.27 8.31 0.71 0.61 0.53 0.47 0.43 0.39

Rater (Case) 7.35 14.30 0.25 0.21 0.18 0.16 0.15 0.13

Student * 
Case 17.03 33.13 2.84 2.43 2.13 1.89 1.7 1.55

Student 
* Rater 
(Case) and 
residual 17.03 33.13 0.57 0.49 0.43 0.38 0.34 0.31

Total 51.40 100.00

Relative Error 
Variance 3.41 2.92 2.55 2.27 2.04 1.86

Absolute 
Error 

Variance 4.36 3.74 3.27 2.91 2.62 2.38

G Coefficient 0.63 0.66 0.69 0.72 0.74 0.75

Dependability 
Index 0.57 0.6 0.64 0.66 0.69 0.71

Table 2. Generalizability and Dependability Study

2. The D-study variance components were calculated by dividing the G-study variance component estimates by the number of cases in the study.

3. Relative error variance was calculated by summing all of the D-study variance components that include interactions with the student. The G coefficient 
was calculated by dividing the student variance component by the sum of the student variance component and the relative error variance.

4. Absolute error variance was calculated by summing all of the D-study variance components. The dependability index was calculated by dividing the 
student variance component by the sum of the student variance component and the absolute error variance. All of these calculations can easily be done in 
an Excel spreadsheet.
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DISCUSSION 
AND ADDITIONAL 
APPLICATIONS
Although G-theory is a niche type of statistical 

analysis, it has many applications that those who 

work in institutional research and assessment are 

likely to encounter. The analysis that is discussed 

above was designed to determine how much of 

the variance in an exam was due to the student, 

the case, the rater, and so on. One of the primary 

findings was that, although more of the variance 

than is ideal is due to the raters, the majority of 

the variance was attributable to factors other than 

the raters (such as student * case and student * 

rater(case) and the residual), which suggests that the 

raters were evaluating the students’ performance 

objectively and reliably. Those that work in 

institutional research and assessment, particularly 

those that are associated with health- and medicine-

related programs, are often called on to answer 

these types of research questions, and hopefully 

the analysis presented above is useful to those 

researchers and can be used as a blueprint for 

conducting similar research projects. Those that are 

interested in additional ways that G-theory concepts 

can improve assessment procedures in the medical 

school curriculum are encouraged to consult Bloch 

and Norman’s (2012) excellent discussion on the 

topic.

Those that work in institutional research and 

assessment are likely to encounter many research 

projects where a G-study is useful. For example, 

many large universities have substantial sections 

of writing-intensive courses where students are 

Figure 1. Generalizability Based on Number of Cases

6 Cases 7 Cases 8 Cases 9 Cases 10 Cases 11 Cases

G Coefficent 0.63 0.66 0.69 0.72 0.74 0.75

Dependability Index 0.57 0.6 0.64 0.66 0.69 0.71
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responding to more than one essay prompt, and 

where the grading is done by multiple teaching 

assistants. In this type of situation, G-theory can 

be used to determine how much of the variance 

in the students’ scores on the essays is due to the 

teaching assistants, which would help to empirically 

determine if the teaching assistants are grading 

the essays in a reliable fashion. Additionally, the 

amount of variance that is due to the different 

essay prompts can be determined, which would 

assist faculty in making decisions about the relative 

difficulty of the essay prompts.

Another situation where G-theory could be useful 

to improve student learning is when multiple faculty 

members are evaluating student portfolios. Similar 

to the above discussion, G-theory could be used to 

determine the amount of variance that is due to the 

faculty members grading the portfolios, which would 

help to determine if the faculty members are grading 

the portfolios in a reliable fashion. 

The above discussion of the possible uses for a 

G-theory analysis in institutional research and 

assessment is certainly not exhaustive. G-theory 

is undoubtedly a useful analytic procedure, and it 

can help answer many research questions related 

to student learning outcomes that institutional 

research and assessment practitioners are called on 

to examine.
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APPENDIX 1. SAS SYNTAX
 

Data rating;

infile “C:\Users\paul\Desktop\G_study.csv” 

delimiter=”,” dsd;

Input ID $ Case $ Rater $ Score;

run;

ods rtf file= “C:\Users\paul\Desktop\G_study.rft”;

PROC HPMIXED method=REML;

CLASS ID Case Rater;

MODEL Score = ;

Random ID Case Rater(Case) ID*Case;

run;

ods rtf close;


