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Abstract
Social network analysis (SNA), with 
its distinct perspective on studying 
relations and its exceptional capability 
to visualize data, should be embraced 
by institutional researchers as a 
promising new research methodology 
complementary to inferential and 
exploratory statistics. This article 
introduces SNA through discussion of 
three analytical studies on topics highly 
relevant to institutional research (IR): 
(1) double-majors, (2) gatekeeping 
courses, and (3) STEM pipeline leaking. 
The unique approach of SNA in 
exploring, analyzing, and presenting 
data has great potential for advancing 
IR’s analytical capacity.

INTRODUCTION
Institutional research (IR) professionals 
frequently adopt new analytical tools 
and research methodologies. This has 
allowed more sophisticated studies 
to be carried out that better inform 
institutions’ policy making, which leads 
in the long term to students being 

better served. Traditional descriptive 
and inferential statistics, from simple 
frequencies and cross-tabulations, 
to the whole family of regressions, 
to more-advanced techniques such 
as survival analysis and structural 
equation modeling, have sufficiently 
fulfilled a large part of IR’s analytical 
functionality. At the same time, the 
large amount of data found in IR 
and the nature of IR research that 
emphasizes identification of patterns, 
predictions, and possible interventions, 
coupled with high-capacity software 
such as SAS, have made exploratory 
statistics a new frontier in IR. The recent 
interest in data mining and predictive 
modeling exemplifies this shift.

However, a missing piece of IR analytics 
is the study of relations. Traditional 
statistical methods assume the 
observation independence—that is, 
they assume that observations of a 
study are not related to one another, 
but rather can be independently 
examined by various internal and 
external attributes (Chen & Zhu, 
2001). The observations in higher 
education settings, however, often 
are not independent. The activities 
of higher education and the people 
involved are relational and interactive 
in nature. Examples of these activities 
include co-authorship of scholarly 

publications, faculty collaboration 
on research projects, peer influence 
among students with specific ethnic 
or social backgrounds, mentorship 
between faculty members and 
students, formation of learning 
communities among students with 
shared academic interests, and so forth. 
Relations also extend beyond people: 
for example, majors within a discipline 
are interrelated by overlapping course 
offerings, colleges and universities are 
interrelated by students transferring 
in and out, and states form a network 
through out-of-state student 
enrollment.

Such networks of relations are 
extensive in higher education, but few 
studies have addressed their dynamics 
and implications, partly because of 
the methodological limitations of 
inferential and exploratory statistics. 
As Wasserman and Faust (1994) in their 
classic book of social network analysis 
(SNA) stated, “The focus on relations, 
and the patterns of relations, requires 
a set of methods and analytic concepts 
that are distinct from the methods of 
traditional statistics and data analysis” 
(p. 3). The inadequate understanding 
of relations and interactions among 
the various entities in higher education 
calls for the addition of network 
analysis into IR’s analytical paradigm.
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At the intersection of inferential 
statistics, exploratory statistics, and 
network analysis is data visualization—
or the representation of data through 
graphical means. However, “data 
visualization . . . involves more than 
just representing data in a graphical 
form (instead of using a table). The 
information behind the data should 
also be revealed in a good display; 
the graphic should aid the readers or 
viewers in seeing the structure in the 
data” (Chen, Härdle, & Unwin, 2008, 
p. 6). As the well-known statistician 
and pioneer in data visualization 
Edward Tufte stated, “At their best, 
graphics are instruments for reasoning 
about quantitative information. . . . Of 
all methods for analyzing and 
communicating statistical information, 
well-designed data graphics are usually 
the simplest and at the same time the 
most powerful” (Tufte, 2001, p. 13).

Founded on graph theory, network 
analysis is exceptionally well developed 
in generating meaningful and 
intriguing visual representations of 
data. While charts and graphs are 
integral components of inferential and 
exploratory statistics, graphics is at the 
heart of network analysis. It is the way 
that an underlying network structure 
can be uncovered, while at the 
same time providing the vocabulary 
through which network properties 
can be described. At a time when 
effective communication of findings 
to institutions’ administrators and 
other constituents is more important 
than ever to further data-driven 
and research-based policy making, 
network analysis, with its expertise in 
data visualization, can be especially 
beneficial to IR.

This article introduces SNA to the IR 
community. As a well-established 
method that has been widely used in 
social sciences, SNA can contribute 
a great deal to IR with its unique 
perspective on relations and its power 
in visual presentation. The following 
will (1) introduce basic concepts in 
SNA, (2) present three studies that 
used SNA, and (3) discuss issues key to 
successfully applying SNA in IR.

SOCIAL NETWORK 
ANALYSIS AND ITS 
BASIC CONCEPTS
SNA is inherently an interdisciplinary 
endeavor that uses social psychology, 
sociology, statistics, and graph 
theory. Beginning in the 1970s, 
the empirical study of various 
networks has played an increasingly 
important role in the social sciences. 
Among many of its applications, 
SNA has been used to understand 
the diffusion of innovations, the 
communication of news, the spread 
of diseases, the culture and structure 
of social organizations and business 
corporations, the formation of political 
views and affiliations, and so forth 
(Carrington, Scott, & Wasserman, 
2005). More recently SNA has gained 
significant use in studying online 
communities and social media such as 
Facebook and Twitter.

The complicated mathematical 
background of SNA is beyond the 
scope of this article. However, it would 
be helpful to explain in simple terms 
several basic yet essential concepts 
used in the examples of analytical 
works described in this paper: vertice 
or node, edge, degree, directed and 

undirected graph, weight, modularity, 
and centrality.

Borrowed from graph theory, the 
interconnected objects in SNA 
are represented by mathematical 
abstractions called vertices (more 
commonly called nodes), while the 
links that connect some pairs of nodes 
are called edges. The number of edges 
incident upon a node is defined as 
degree. Typically, a graph is depicted 
in diagrammatic form as a set of dots 
for the nodes, joined by lines or curves 
for the edges. When applied to a study, 
nodes represent the observations 
of a study, and edges represent the 
relations between the observations 
of a study. If the relations are initiated 
from certain observations to others, 
the edges would be represented 
with arrows from the initiators to the 
receivers, and the graph would be 
directed. Conversely, if the relations 
between two observations are mutual, 
the edge would be represented with 
a line segment connecting the two, 
and the graph would be undirected. 
A graph is weighted if a value or a 
weight is assigned to each edge. 
Depending on the problem at hand, 
such weights might represent a diverse 
set of attributes of the relationship 
(Hanneman & Riddle, 2005).

For demonstration, Figure 1 is 
a weighted undirected graph 
representing a hypothetical network 
of faculty collaboration. Nodes 1–10 
are faculty members. Edges exist 
between those who collaborated 
on grant proposals, and weights on 
the edges denote the number of 
grant proposals that the two faculty 
members submitted together. As seen 
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in the graph, Faculty 2 worked with 
Faculty 1 once, with Faculty 5 once, 
and with Faculty 3 three times on 
grant proposals; the node representing 
Faculty 2, therefore, has a degree of 
three and a weighted degree of five.

Modularity is one important measure 
of the network structure. It divides 
a network into modules, also called 
groups, clusters, or communities. 
Networks possessing community 
structures function differently from 
average networks, so identification 
of such community structures can 
have substantial importance in 
understanding the dynamics and 
properties of the network. The 
mathematical idea of the modularity 

Figure 1. Demonstration of Basic Concepts in Social Network Analysis

measure is to compute the difference 
between the number of edges falling 
within groups and the expected 
number of edges in an equivalent 
network where edges are placed at 
random (Newman & Girvan, 2004). 
Large differences would indicate nodes 
being densely interconnected while 
being only sparsely connected with the 
rest of the network—in other words, 
forming modules. Network analysis 
software can generate this measure 
and partition the network by its 
underlying community structures.

Centrality is another important 
measure, examining the relative 
importance of a node within a graph. 
There are three main types of centrality: 

degree, closeness, and betweenness. 
Degree centrality is defined as the 
number of edges that a node has. 
The nodes having higher degrees are 
related to other nodes, and therefore 
are at positions in the network that 
are more central. Closeness centrality 
emphasizes the distance of a node 
to all other nodes in the network. 
Betweenness centrality focuses on the 
position of a node between pairs of 
nodes. The higher betweenness of a 
node means more nodes depend on it 
to make connections with other nodes. 
Centrality can be evaluated with a set 
of statistics, such as Freeman Degree 
Centrality, Geodesic Path Distances, 
Eigenvector Centrality, Hierarchical 
Reduction, and so forth (Hanneman 
& Riddle, 2005). This article does not 
attempt to elaborate on details of these 
statistics; the readers are encouraged 
to obtain more information (e.g., 
Carrington et al., 2005; Chen et al., 
2008; Tufte, 1990, 2001; Wasserman 
& Faust, 1994). The output of the 
above-mentioned statistics for the 
hypothetical network in Figure 1 is 
provided in Table 1 (next page).

For SNA, however, the statistics are 
often not the end product. Unlike 
inferential and exploratory statistics, 
the graphs in SNA are at the core 
of explaining and understanding 
findings, as the relational statistics 
are incorporated into graphs through 
the visualization process.  Figure 
1 shows two modules; Module A, 
consisting of faculty members 1 
through5 and faculty member 10, 
and Module B, consisting of faculty 
members 6 through9. Members of 
each module worked more frequently 
within rather than across the modules. 
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Faculty 5 worked mainly with faculty 
1 through4, but also worked once 
with faculty6 and once with faculty 
7, thus bridging the two modules. 
A closer look at the departmental 
affiliation shows that faculty in Module 
A are from the biology department, 
and faculty in Module B are from the 
psychology department. Faculty5, 
a professor in biology, has research 
interests in neuroscience and has 
actively collaborated with professors in 
psychology. Faculty 10 is a statistician 
from the mathematics department 
who built a collegial relationship with 
Faculty 4 and who was once asked to 
work with him on a grant.

It can also be observed that Faculty 5 is 
at the center of the network in all three 
centrality measurements. Faculty 5 is 
identified as an active researcher in the 
two fields of biology and psychology 
by the high degree centrality (shown 
in Table 1 as Degree of 6 and Weighted 

Degree of 7), as a good collaborator 
with all other researchers by the high 
closeness centrality (shown in Table 
1 as 0.75), and as the key person for 
promoting interdisciplinarity between 
the two fields by the high betweenness 
centrality (shown in Table 1 as 0.65).

APPLICATION OF 
SOCIAL NETWORK 
ANALYSIS IN THREE 
STUDIES
This section will describe the 
application of   SNA through three 
examples of small-scale analytical work: 
(1) a study of double-majors that used 
the modularity measure of SNA to 
reveal the connectivity among majors 
that can inform  student advising; 
(2) a study of gatekeeping courses 
that used the measure of centrality to 
identify major-specific  and  general-
education courses that  students 

failed before dropping out of  the 
institution; and (3) a study of STEM 
(science, technology, engineering, 
and mathematics) pipeline leaking 
that examined students who started 
in STEM majors but subsequently 
graduated in non-STEM majors.

The three studies were conducted 
using the open source software Gephi 
(http://gephi.org). As a tool specifically 
developed for network analysis, Gephi 
has at its core a set of algorithms, called 
layouts, that detect and generate 
graphical representations of network 
structures. The layout ForceAtlas, for 
example, probably the most used 
force-directed layout, simulates 
a physical system in which nodes 
repulse each other like magnets, while 
edges attract their nodes like springs. 
These forces create a movement that 
eventually converges to a balanced 
state of spatialization of the nodes 
and edges, revealing the structure and 

Id Label Modularity 
Class

Degree Weighted 
Degree

Closeness 
Centrality

Betweenness 
Centrality

Eigenvector 
Centrality

1 Faculty 1 0 2 3 0.47 0.00 0.44

2 Faculty 2 0 3 5 0.50 0.01 0.57

3 Faculty 3 0 3 6 0.53 0.03 0.59

4 Faculty 4 0 3 4 0.53 0.22 0.49

5 Faculty 5 0 6 7 0.75 0.65 1.00

6 Faculty 6 1 4 6 0.60 0.18 0.71

7 Faculty 7 1 4 7 0.60 0.18 0.71

8 Faculty 8 1 2 3 0.41 0.00 0.40

9 Faculty 9 1 2 4 0.41 0.00 0.40

10 Faculty 10 0 1 1 0.36 0.00 0.14

Table 1. Demonstration of Basic Relational Statistics Output in Social Network Analysis
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features of the network. Layouts have 
their specialties that suit networks of 
different sizes and emphasize different 
features. Layouts such as ForceAtlas2 
and OpenOrd work with big networks, 
Circular and Radial Axis emphasize 
ranking, and GeoLayout uses latitude/
longitude coordinates to visualize 
geographical networks.

The software also provides calculations 
of relational statistics unique to 
network analysis. Measures for 
modularity and centrality, among 
other statistics, can be generated with 
relative ease. The statistics can then 
be used in visualization; for example, 
the computed modularity allows 
partitioning of nodes into groups and 
reveals the community structure of 
the network. The statistics can also be 
saved into the data set and used in 
other statistical analysis; for example, 
the eigenvalue for centrality of each 
observation can be a new predictive 
variable in a regression model.

Graphs generated through Gephi are 
the main tool used to present findings 
of the three studies. Main features 
are shown, while detailed institution-
specific figures that could have been 
shown as labels accompanying the 
nodes and edges are removed from 
the graphs.

Study 1: Double-Majors
Many college students concurrently 
pursue studies in two or more majors. 
Faculty and student advisors may 
anecdotally know some of the popular 
combinations of majors in their 
discipline; IR analysts, however, would 
want to approach the phenomenon of 
double-major with empirical evidence.

Five years (2009–13) of undergraduate 
degree data were compiled to ensure 
adequate sample size and to minimize 
fluctuations over the years. The data 
file contained majors, combinations 
of double-majors, and the number 
of students awarded degrees in each 
double-major. After applying the 
layout algorithm of ForceAtlas, the 
partitioning based on the statistics 
of modularity, and the filtering that 
eliminated majors with fewer than 
five students graduating with double-
majors every year over the study 
period, a network structure emerged 
with more than 1,500 baccalaureate 
graduates in two of the approximately 
40 or (Figure 2).

Majors clustered into groups based on 
their connections with one another 
after the modularity measure was 

employed. Three areas of study 
appeared prominently in the graph 
where double-majors concentrated—
economics/business, arts/humanities, 
and biological sciences/psychology. 
Four free-standing yet strongly tied 
pairs of majors were also identified—
international affairs/political science, 
housing/consumer economics, exercise 
and sport science/athletic training, and 
consumer foods/dietetics. Clustering 
of majors into groups provides an 
empirical verification that double-
majors occur most often within 
disciplines where connectivity between 
course offerings, degree requirements, 
and administrative procedures 
facilitates the pursuit of double-majors.
The font size of the major titles is 
proportionate to the weighted degree 
of the major—that is, the number 
of students in this major who also 

Figure 2. Double-Major Combinations of Bachelor’s Degree Recipients
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Figure 3. Failing Courses and Last Major of Undergraduate Dropouts

graduated with a degree in another 
major. It can be seen that finance, 
psychology, biology, international 
business, and economics had the most 
students graduating with double-
majors. The thickness of the edges 
is proportionate to the number of 
students taking on the corresponding 
pair of majors. It is then observed that 
over the five-year period psychology/
biology, housing/consumer economics, 
international affairs/political science, 
finance/international business, and 
finance/economics were the top 
five most popular double-major 
combinations.

As Edward Tufte (2001) stated, “Modern 
data graphics can do much more than 
simply substitute for small statistical 
tables” (p. 9). The visual presentation 
in Figure 2 of the double-major data 
not only conveys information in a 
more coherent and succinct fashion 
than a tabular presentation, but also 
reveals the data at multiple levels not 
conveniently available in table form. It 
provides a broad overview of the areas 
of study within which double-majors 
tend to form, as well as the details of 
specific majors and major combinations. 
As groupings of majors surface through 
the modularity measure of SNA, more 
insights emerge. . These patterns 
of double-majors that graduates 
have successfully followed can serve 
as evidence for student advisors 
in their discussions with students 
contemplating taking on another major 
of study.  University administrators 
might want to strengthen existing 
partnerships or explore new linkages 
between majors to enrich students’ 
educational experiences and promote 
their future employability.

Study 2: Gatekeeping Courses
Entry-level gatekeeping courses have 
been known to pose challenges to 
students and to potentially lead to 
attrition, particularly in STEM majors. 
It is very important for institutions 
focused on retaining and engaging 
students to help those students 
succeed in courses that most frequently 
serve as gatekeepers. Identification of 
these courses is inevitably the first step.

This study tracked students from four 
first-time, full-time freshmen cohorts 
(Fall 2004–Fall 2007) to identify 
dropouts—those who had neither 
graduated nor remained enrolled six 
years after their initial matriculation. 
For those dropouts who had failing 
grades on record, the failed courses 
and the majors that they last enrolled 
in before leaving the institution were 
compiled. Over 1,500 students from 17 
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majors with 42 potential gatekeeping 
courses were included in the study.

Figure 3 is the visual representation 
of relations between failed courses, 
indicated by green nodes, and last 
majors, indicated by red nodes. Plotting 
was based on the degree centrality 
of the majors in this course-major 
network. The star network at the center 
of the graph made it clear that most 
of the dropouts left the institution 
with an unspecified major—in other 
words, they left early in their college 
life before declaring a major—and 
the many courses surrounding the 
unspecified major were the failed 
courses that could be potential 
hurdles to student retention. Among 
them, five introductory courses—
Precalculus (MATH1113), American 
Government (POLS1101), Elementary 
Psychology (PSYC1101), Freshman 
Chemistry I (CHEM1211), and Basic 
Concepts in Biology (BIOL1103)—have 
prominent edges in the graph.  The 
thickness of the edges between these 
courses and the unspecified major 
is proportionate to the number of 
students with an unspecified major 
who failed these courses. Furthermore, 
these five courses were actually the 
most challenging for students from 
all majors, as indicated by the size 
of their title in the figure.  The size is 
proportionate to the total number 
of students who failed these courses 
regardless of their major.

The university also lost students in the 
other red-node majors—computer 
science, prebusiness, psychology, 
biology, and so forth. These majors 
are located on the periphery of the 
graph because of their relatively low 

centrality in this course-major network. 
Failing of certain major-specific courses 
was potentially related to dropping 
out of these majors. For example, 
two foundation courses in computer 
science, Systems Programming 
[CSCI1730] and Discrete Mathematics 
for Computer Science [CSCI2610], 
were probably weeding out students.  
An introductory accounting course, 
Principles of Accounting I [ACCT2101] 
and an introductory economics 
course, Principles of Macroeconomics 
[ECON2105], were stumbling blocks 
for some students in prebusiness.  The 
introductory statistics course [STAT2000] 
might have been a source of struggle for 
some students with sociology, speech 
communication, international affairs, 
and psychology majors.

One of the principles that Tufte (1990) 
suggested for the good practice of 
statistical graphics is “enhancing 
the dimensionality and density of 
portrayals of information” (p. 9). 
Figure 3 combined three dimensions 
of information—the gatekeeping 
courses, the majors that lost students, 
and the relationship between majors 
and courses—in one graph, while 
the same information in tabular form 
would have been cumbersome and 
lacked clarity. Instead of providing 
an isolated view of students and 
courses confined to a specific major, 
Figure 3 allows examination of more 
comprehensive course-taking patterns 
across majors. More importantly, 
the graph vividly points to possible 
directions for further investigation 
and action. University administrators 
might want to evaluate teaching 
and learning in the five introductory 
courses revealed as gatekeepers in the 

graph. Perhaps factors like a large-
lecture form of pedagogy, one-way 
passive learning, or an emphasis 
on memorization over critical 
thinking, might have contributed 
to the students’ failings. Strategies 
could then be developed to engage 
both the faculty and the students 
to change these gatekeepers into 
gateways of student success. The 
department head of biology might 
learn from the graph that for students 
intending to major in biology, 
Freshman Chemistry I (CHEM1211) 
and II (CHEM1212) together with 
Principles of Biology I (BIOL1107) were 
the most challenging courses, and 
that for students who succeeded in 
these courses and officially enrolled 
in biology as a major, the next set of 
courses in the sequence—Modern 
Organic Chemistry I (CHEM2211) 
and II (CHEM2212), and Principles 
of Biology II (BIOL1108)—were road 
blocks. A long-term plan focusing on 
building a solid foundation for further 
study in this major may be needed. 
Curriculum and pedagogy designed 
with intentional sequencing may help 
ensure adequate preparation and 
smooth transition of students for each 
section of the course sequence.

Study 3: STEM Pipeline Leaking
Government, educators, and industry 
leaders have long been concerned 
about STEM pipeline leaking, where 
students depart from  academic and 
career paths in science, technology, 
engineering, and mathmatics. 
According to the BusinessHigher 
Education Forum (2010), only 4 percent 
of the 4 million ninth-graders in the 
United States in 2001  would be STEM 
college graduates by 2011. This study 
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attempted to revealan aspect of the 
leakage along the STEM pipelineby 
identifying undergraduate students 
in STEM majors who changed their 
academic pursuit to non-STEM majors.

Students from five first-time full-time 
freshmen cohorts (Fall 2003–Fall 2007) 
were tracked through fiscal year 2013 
for bachelor’s degree attainment. 
Those who first declared a major in 
STEM (based on the National Science 
Foundation definition) and later 
graduated in non-STEM majors, and 
whose major GPA was 3.0 or above 
when leaving STEM, constituted the 
group for this study.

A directed graph using the Circular 
Layout was built to show the migration 
between majors. For focus and clarity, 
only STEM majors with ten or more 
students in the five freshmen cohorts 
who later graduated in non-STEM 
majors were retained.  The results in 
Figure 4 represent about 800 students 
in eight starting STEM majors who 
graduated in ten non-STEM fields. The 
blue nodes on the left side represent 
starting STEM majors, sorted and sized 
by the number of students leaving for 
any non-STEM major. The yellow nodes 
on the right side represent ending non-
STEM majors classified into disciplines 
by the first two digits of the major CIP 
code, sorted and sized by the number 
of students transferring in from all 
STEM majors. The thickness of the edge 
between two nodes is proportionate 
to the number of students changing 
majors.

Figure 4 is mainly descriptive. By 
mapping the migration of students, 
the status of retention and persistence 

in STEM majors at the institution is 
illuminated. The graph does not intend 
to address the many facets of the 
issue, but rather to show the non-
STEM destinations for STEM majors 
who were in solid academic standing 
in their STEM major. These students 
might intend to pursue postgraduate 
professional programs, or plan for 
careers other than basic research, or 
simply want to explore studies beyond 
STEM. Instead of a divisive view of 
STEM versus non-STEM, the linkages in 
the graph present an opportunity for 
cooperation between the two fields.

A major-minor partnership can be 
one way to bridge the two fields. 
Possibilities exist for interdisciplinary 
collaboration between computer 
science and management information 
systems in business; mathematics and 
econometrics or finance in business; 
biology and dietetics study or nutrition 

science in family and consumer 
sciences; and so on.. Certificate 
programs can be another option—for 
example, a certificate program in 
science journalism could be an option 
for students in biology or chemistry 
who are also interested in journalism; 
a program in math education could be 
an option for mathematics students 
who have an interest in education; or a 
program in health promotion could be 
a good fit for biology students aspiring 
to a career in health professions. If the 
demanding workload of a STEM major 
prohibits formal pursuit of another 
area of study, an area of emphasis 
that blends in courses from a relevant 
non-STEM major may meet students’ 
needs. Other possibilities may include 
joint projects or the incorporation of 
governmental, societal, or cultural 
implications of science and technology 
into the teaching of STEM.

Figure 4. STEM Major Students Graduating in Non-STEM Majors
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Figure 4 illustrates many opportunities 
to bridge the gap between STEM 
and non-STEM, and suggests the 
need for an orchestrated effort from 
departments on both sides to foster a 
campus-wide culture change geared 
to encourage students to stay in STEM 
without missing opportunities present 
in non-STEM fields.

DISCUSSIONS
In addition to the Gephi software that 
was used to conduct the above three 
studies, other open source software 
for network analysis include UCINET, 
Pajek, and R.  All offer functions such as 
importing and filtering data, visualizing 
and spatializing network structures, 
generating relational statistics, and 
manipulating and exporting graphic 
presentations (Bastian, Heymann, & 
Jacomy, 2009). Their flexible interfaces 
and interactive ways of analyzing data 
make them accessible to IR analysts of 
different levels.

There are two issues critical to the 
successful application of SNA in 
IR. First is an open mind that sees 
relations and tries the network 
approach in conducting research on 
topics old and new. Network analysis, 
especially, allows new leverage 
for answering traditional research 
questions in IR. Relational statistics 
generated in SNA can provide 
alternative explanations to traditional 
theories, or can explain additional 
variance when they are being entered 
into established models. Studies that 
provide good examples of SNA include 
work investigating social network and 
college students’ sense of community 
(Dawson, 2008); student networking 

in an online learning environment 
(Dawson, 2010); peer influence on 
student persistence and retention 
(Eckles & Stradley, 2012; Thomas, 
2000); the extent to which size and 
density of a student’s social network 
predict academic achievement 
(Fletcher & Tienda, 2009; Skahill, 
2003); and the effect of roommate 
and friend network on racial attitude 
and cultural competency (Levin, van 
Laar, & Sidanius, 2003; van Laar, Levin, 
Sinclair, & Sidanius, 2005); faculty 
co-authorship and co-citation (Girvan 
& Newman, 2002; Mählck & Persson, 
2000; Otte & Rousseau, 2002; Perianes-
Rodríguez, Olmeda-Gómez, & Moya-
Anegón, 2010). However, few studies 
have been done on the formation of 
network, or on the university social 
network as a whole in which the 
student network, the faculty network, 
and the staff network interact. More 
robust and varied studies on SNA 
are needed to enrich the literature in 
higher education in general and in IR 
in particular.

The second issue is how to visually 
present the data with proper 
functionality and aesthetic form. 
Excellence in data visualization 
lies in the delivery of patterns and 
their implications uncovered from a 
data set in an intuitive, informative, 
and productive way, to improve 
understanding and encourage 
audience engagement (Friedman, 
2008). The various network analysis 
software products provide highly 
configurable layout algorithms for 
generating graphs, and tools for 
modifying the display parameters of 
the graphs. They are readily available 
to the analyst, but only the right use 

of them can achieve balance between 
information accuracy and visual 
attractiveness, and can ultimately 
facilitate understanding of the data. 
The graph should lead the viewer 
to think about the substance and to 
see the differences, rather than be 
distracted by the graphic design. Most 
often, multiple aspects of the data 
set can be presented in one graph; a 
clear focus serving a clear explanatory 
purpose is thus important for the graph 
to be meaningful. Sometimes details 
are sacrificed to render the graph with 
clarity; tabular and verbal descriptions 
of the data set then must be closely 
integrated with the graph for full 
reporting of the findings. And above 
all, “an ill-specified model or a puny 
data set cannot be rescued by a visually 
appealing graph” (Tufte, 2001, p. 13).

SNA is not meant to replace inferential 
and exploratory statistics, but 
rather is a complement that greatly 
enriches traditional model- building 
by allowing the study of unique 
research questions concerning a 
network type of relationships. IR has 
been a relative latecomer to network 
analysis. However, as more relational 
data (e.g., institutional records, email 
corpora, online learning management 
systems, and social media Web sites) 
are collected and become more easily 
accessible, IR researchers will have 
more opportunities to apply SNA and 
thus to appreciate the unique insights 
this method offers. SNA should emerge 
as an important tool as IR increasingly 
assumes the role of a local and national 
key player in educational statistics, 
analytics, and policy making.
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Abstract
Institutional researchers come to their 
field from a variety of educational and 
work experiences. Regardless of their 
expertise, however, it is difficult—if not 
impossible—for a single researcher, 
or even a large team of researchers, to 
know and understand all the nuanced 
differences among the many disciplines 
found in a comprehensive university. 
This paper discusses the collaboration 
between institutional researchers 
and faculty to evaluate the faculty 
experience in science and engineering. 
Rather than discussing the outcome of 
that evaluation, this paper focuses on 
the value of the collaborative process.

INTRODUCTION
The Ohio State University’s project 
Comprehensive Equity at Ohio State 

(Project CEOS), which was funded 
by a grant from the National Science 
Foundation, focuses on retention of 
women faculty in the STEM disciplines 
(science, technology, engineering, 
and mathematics). Project CEOS has 
worked intensively with administrators 
and faculty in three STEM colleges 
(Engineering, Veterinary Medicine, 
and the Division of Natural and 
Mathematical Sciences within Arts and 
Sciences). Project CEOS researchers 
wished to study and evaluate resource 
allocation and working environments 
for men and women faculty in these 
units to understand whether Ohio State 
has problems similar to those identified 
in the landmark Massachusetts Institute 
of Technology (MIT) study, “A Study 
on the Status of Women Faculty in 
Science at MIT” (Chisholm et al., 1999), 
described below.

At the request of Project CEOS, the 
Office of Academic Affairs appointed a 
committee to study resource allocation 
and working environments. The 
committee was charged to identify 
important resource parameters of the 
work environment for faculty, and then to 
measure those parameters appropriately 
in order to ascertain whether gender was 
an explanatory variable. 

The committee included four women 
and five men holding the following 
staff and faculty positions:

• Assistant vice president, 
Institutional Research and Planning

• Associate director, Institutional 
Research and Planning

• Director, Human Resources 
Organizational Metrics and Data 
Analytics

• Professor, Evolution, Ecology, and 
Organismal Biology; principal 
investigator, Project CEOS

• Chair, Faculty Compensation and 
Benefits Committee; professor, 
Comparative Studies

• Professor, Veterinary Biosciences
• Associate provost and director, The 

Women’s Place; professor, City and 
Regional Planning

• Professor, Statistics
• Professor, Electrical and Computer 

Engineering

The results of the committee’s work 
have been published in a special report 
(Herbers & Desai, 2012). The actual 
findings are of interest, but here we 
focus on the value of the collaborative 
process, with particular emphasis 
on the insights brought to bear by 
the faculty who work in the relevant 
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environments and how those insights 
shaped the analysis. Our experiences 
show how understanding patterns 
in data concerning faculty work is 
best achieved through collaboration 
between institutional researchers and 
faculty from multiple disciplines in the 
discussions and analysis. Furthermore, 
such efforts provide faculty with 
opportunities to learn about disciplines 
outside their own.

COMMITTEE 
BACKGROUND
“Institutional researchers should seek 
opportunities to collaborate with 
faculty. They can provide a valuable 
service to faculty and enhance the 
scholarly value and intellectual rewards 
of their own work” (Delaney 2009, p. 35).

Colleges and universities rely on 
research professionals for the 
collection, reporting, and analysis 
of institutional data to support 
decision-making and to provide for 
accountability. These institutional 
researchers work with data sets 
that address a wide range of topics, 
including budgets, personnel, students, 
and square footage of lab space to 
develop an overall portrait of how 
the institution works. Given the range 
of research topics, it is not surprising 
that the educational background of 
institutional researchers is anything 
but standard. Nationally, 30 percent of 
all institutional researchers hold their 
highest degree in the social sciences, 
with another 60 percent distributed 
fairly evenly across education, STEM 
fields, and business. The remaining 
10 percent are found in humanities 
and other disciplines (Volkwein, Liu, 

& Woodell, 2012). The committee had 
access through its two Institutional 
Research and Planning (IRP) members 
to the expertise of the full IRP group 
at Ohio State; members of that group 
hold advanced degrees in public affairs, 
business administration, psychology, 
library sciences, and higher education 
and student affairs. This combination of 
education yields a team that is trained 
in quantitative and qualitative research, 
program evaluation, bibliometrics, 
semantic analysis, and project 
management. With an average tenure 
at Ohio State of more than ten years, 
the institutional research (IR) staff also 
has valuable historical knowledge of 
the university.

The faculty expertise on this committee 
was highly quantitative. Because they 
come from science and engineering 
backgrounds, the faculty members 
were able to think carefully about 
confounding variables, outliers, 
methods for pooling data, and 
specifics of statistical analysis. Their 
understanding of how their work is 
represented by institutional data and 
how that representation can be skewed 
by faculty whose work lies outside 
his or her disciplinary norms was 
tremendously important to this study. 
This evaluation required us not only 
to analyze existing data, but also to 
delve into local department culture to 
understand those data.

IRP staff have worked closely with 
Ohio State faculty over the years, most 
commonly providing, as suggested 
by Delaney, “a valuable service”—
data and analysis to support faculty 
scholarship or for faculty bodies to 
consider as part of faculty governance 

and decision-making. This project, 
however, had a distinctly different 
collaborative approach. Committee 
members recognized from the 
beginning that both staff and faculty 
had important contributions to make, 
with staff responsible for providing 
quality data and analyses, and faculty 
responsible for ensuring that the 
data were gathered and the analyses 
were performed with the appropriate 
background understanding and 
context. The committee learned early 
in its deliberations, however, that 
faculty were not always knowledgeable 
about research and teaching norms 
in STEM disciplines other than their 
own. The process of establishing 
context for the data thus became one 
of discovery by the whole committee, 
rather than instruction from faculty 
to staff. The IRP staff and faculty were 
peers on this project, each contributing 
her or his own methodological and 
content expertise for the good of the 
committee as a whole.

THE EVALUATION
As the first effort to evaluate STEM 
faculty resource allocation and work 
environment by gender for our 
institution, this project required careful 
deliberation before plunging into data 
analysis. The committee members 
were highly aware of the potential 
impact of a study that included 
gender as a variable. It therefore 
became imperative that we develop 
methodologies that would stand up to 
intense scrutiny.

The committee met every other 
week over a three-month period 
and interacted frequently via email, 
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spending the first several weeks 
discussing its charge and what kinds 
of data would be most important. The 
first decision was to concentrate on 
resource allocation to tenure-track 
faculty, because this group demands 
the greatest share of faculty resources, 
and because the institution makes 
long-term commitments to its tenured 
faculty. Our discussions at this stage 
centered on the kinds of resources 
important for faculty as well as the 
kinds of data that were available. 
Faculty members on the committee 
brought up a suite of issues for which 
centralized data simply do not exist 
(e.g., advising loads, library resources, 
and opportunities for collaboration). 
The interplay between staff and faculty 
at this stage was crucial: as faculty 
members brought up resources they 
considered crucial to their professional 
success (library subscriptions to 
certain journals, availability of certain 
equipment, access to graduate student 
assistants), IR staff found themselves 
challenged to identify appropriate 
measures from their databases.
Ultimately, the committee settled on 
four parameters of most interest for 
resource allocation: salary, start-up 
accounts, square footage of lab space, 
and teaching loads. Not all identified 
data were available through central 
institutional repositories, but faculty 
members of the committee were able 
to identify additional data sources. This 
supplemental information included 
data on start-up accounts offered to 
incoming faculty and data on teaching 
loads for the health sciences disciplines, 
whose teaching assignments are not 
accurately captured in the institutional 
data maintained by the Office of 
Enrollment Services. These additional 

data were available from college 
deans’ offices. Next we describe the 
discussions that led to the final analysis 
reported in Herbers and Desai (2012).

Literature Review
Faculty and staff on the committee 
reviewed previous scholarship related 
to gender disparities in faculty salaries, 
teaching, and service assignments 
and research productivity. Most such 
studies base their work on survey 
data, and often use the National 
Survey of Postsecondary Faculty as a 
source. Recently, the National Research 
Council released Gender Differences 
at Critical Transitions in the Careers of 
Science, Engineering and Mathematics 
Faculty, which looked not only at salary 
and workload issues, but also at the 
allocation of laboratory space and 
start-up packages (National Research 
Council, 2010). Data for this study were 
collected through a survey of tenured 
or tenure-track faculty and department 
administrators from the 89 universities 
then categorized as Carnegie Research I.

Perhaps the most well-known study of 
gender disparities in science disciplines 
at a single institution is the MIT study 
“A Study on the Status of Women 
Faculty in Science at MIT” (Chisholm 
et al., 1999). A faculty committee 
collected data from the Office of the 
Dean of Science and from institutional 
researchers in the MIT Planning Office. 
In addition, that faculty committee 
conducted interviews with women 
faculty and department heads. This 
study found that female faculty 
received lower pay and fewer resources 
than their male colleagues, despite 
equal professional accomplishments.

It became apparent to the Ohio State 
University committee that many of 
the variables used in these earlier 
studies were already collected in our 
institutional data sets, with additional 
data collected by individual colleges. 
Thus, the committee decided not to 
include a faculty survey in the research 
and analysis design.

Faculty Salaries
IRP provided faculty salary data, 
normed to a nine-month appointment. 
In our initial review of those data, we 
discussed determinants of faculty 
salaries that complicate the kind of 
granular analysis we intended (e.g., 
rank, time in rank, discipline, scholarly 
record). Because we were most 
interested in determining whether 
a gender gap existed for salary, 
the committee needed to employ 
techniques that would eliminate 
potentially confounding factors. The 
discussion on these factors was robust 
and lively. Committee members readily 
agreed that salaries for assistant 
professors are relatively uncomplicated, 
reflecting starting salaries at market 
and a short timespan within that rank. 
Thus evaluating salaries for assistant 
professors required that we control for 
market conditions but relatively little 
else.

By contrast, salaries for tenured senior 
faculty reflect a multitude of factors: 
(1) salary compression, which results 
when raise pools do not keep pace with 
market increases in starting salaries; 
(2) time in rank, which should reflect 
the number of raise cycles leading to 
higher salaries for those promoted 
years ago; (3) the system of merit raises 
employed by the institution, which 
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produces variation within a cohort 
that reflects differential productivity; 
(4) other market forces (e.g., external 
offers, hires from other universities, 
previous administrative experience, 
demand for a particular focus within a 
discipline), which lend further nuance 
to data interpretation. In order to focus 
on the variable of greatest interest, 
gender, we had to control for other 
factors that affect faculty salaries.

The committee started by eliminating 
outliers (e.g., administrators including 
deans, associate deans, and chairs) as 
well as individuals holding endowed 
professorships and those with recent 
prior administrative experience 
(e.g., former deans). Even though 
the salary data were deidentified by 
IR staff, the faculty representatives 
were able to infer identities of many 
individuals involved; the discussions 
that devolved allowed us to make 
valid decisions on potential outliers. In 
particular, the faculty representatives 
were able to note individuals who had 
been hired or named as University 
Distinguished Professors or Eminent 
Scholars. To a considerable extent, 
this identification of especially stellar 
faculty as outliers reduced the effect 
of other market forces.

The initial data analysis was granular, 
but it quickly became apparent that 
some pooling would be needed 
because of the paucity of women 
in some departments or ranks. 
The committee therefore spent 
considerable time discussing how 
to aggregate faculty into groups for 
statistical analysis. Time in rank for 
associate professors can reflect norms 
about how long individuals serve in 

that rank. Conversations among the 
faculty representatives revealed that 
the expectation for the length of time 
for promotion to professor in some 
units is within five years, whereas the 
norm in other units is within seven 
or eight years. Committee members 
agreed that faculty members who 
had been associate professors for 11 
years or longer were likely to be less 
productive than those who had been 
promoted within that time frame. Thus, 
pooling among associate professors 
should reflect variation in the norms for 
promotion to professor as well as the 
shared perception of lower productivity 
for long time at that rank.

Similarly, faculty revealed during 
the group discussions that some 
departments routinely hire at the 
professor rank, while others do so 
rarely. While this is information that 
can be discovered and confirmed 
from the data, this hiring practice was 
not known to the IRP or the Human 
Resources staff. Furthermore, this 
information would not have been 
established without the faculty input. 
The institutional data showed time 
in rank only at Ohio State, and thus 
were only interpretable for those who 
had spent most of their career at our 
institution. One of the more difficult 
topics for salary analysis was how 
to pool groups of professors. After 
considerable discussion, the committee 
settled on the following seven 
categories of professors:

1. Assistant professors
2. Associate professors in rank 0–5 

years
3. Associate professors in rank 6–11 

years

4. Associate professors in rank 12+ 
years

5. Professors in rank 0–5 years
6. Professors in rank 6–11 years
7. Professors in rank 12+ years 

The committee also spent considerable 
time discussing market forces across 
disciplines. Entry-level salaries, a 
reasonable indicator of market 
conditions, varied substantially across 
the departments the committee 
studied. The IR staff were able to 
provide an initial examination of 
those markets, and the committee 
then grouped departments that 
shared similar market forces, with the 
stipulation that departments would 
be pooled only within a college. 
For example, salaries for electrical 
engineers and computer scientists 
were comparable, as were salaries for 
geologists and ecologists.

After these discussions, the committee 
agreed that we had a reasonably valid 
data set to examine and recommended 
evaluation of the data using multiple 
regression, with gender as both a main 
effect and an interaction term with 
rank, time in rank, and department 
group. Scholarly record was not 
included in the analysis, in part because 
the variance by rank and by disciplines 
meant that classifying faculty according 
to their level of productivity was 
problematic.

Start-up Costs
In the STEM disciplines newly hired 
faculty are offered funds to support 
purchase of equipment, hire laboratory 
personnel, and travel. These start-up 
accounts are negotiated as part of 
the original offer, and they can be 
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substantial: for hires at the professor 
level in the experimental sciences, 
start-up accounts exceeding $1 million 
are common. There is substantial 
variation across disciplines with regard 
to normed start-up figures, and even 
within departments there can be wide 
variation that depends on the research 
area of faculty being hired.

Discussion revealed how difficult it 
can be to interpret those data. First, no 
standard definition exists for what is 
included in start-up costs. In addition 
to the start-up account, commitments 
to new faculty can include laboratory/
office renovations, major equipment 
purchases, summer salary support, 
graduate assistant support, and time 
released from teaching; all of these 
additional measures help to attract 
the best faculty and should not be 
discounted. Even so, the committee 
was forced to restrict its attention to the 
start-up account in the narrowest sense.

The IRP staff collected start-up data 
from college offices and provided it 
in summary form to the committee. 
This was the first time the IRP staff had 
collected start-up data, and they were 
guided entirely in their collection and 
analysis by the committee faculty. 
Faculty representatives were able to 
highlight complications in the data, 
and to suggest ways to move toward 
a statistical analysis. First, the rank of 
hire mattered: senior hires demand 
and receive larger start-ups than do 
entry-level faculty. After discussion, 
the committee decided to examine 
only start-up data for new hires as 
assistant professors, which represented 
reasonable sample sizes for both men 
and women.

Even so, pooling of data across 
departments became important 
again. Our discussion showed that 
the categorizations of faculty by rank 
and years in rank were not necessarily 
useful for analyzing start-up accounts. 
Faculty expertise about market forces 
that determine start-up accounts 
was critical to identify clusters of 
departments that were similar, but not 
identical, to those developed for faculty 
salaries. As an example, Chemical 
and Biomolecular; Materials Science; 
and Mechanical and Aerospace were 
clustered based on faculty advice, 
whereas Biomedical Engineering was 
kept separate. This was not a decision 
that staff could have made based on 
data available to them.

A final additional complication derived 
from subdisciplinary differences 
within a unit; for example, theoretical 
scientists and empirical scientists 
require very different infrastructure yet 
reside within the same department. 
While acknowledging the issue, faculty 
recommended that the committee 
ignore it.

Therefore, the final analysis of start-up 
data focused on assistant professor 
hires and became a simple 2-way 
ANOVA with gender and disciplinary 
cluster as independent variables. 

Lab Space
Lab space is highly prized by 
experimentalists. Rooms for 
specialized equipment; bench space 
for students, postdoctoral researchers, 
and technicians; as well as ancillary 
spaces (e.g., conference rooms, 
common equipment rooms, and office 
space) contribute to faculty research 

productivity. The quality of the lab space 
matters, with clean modern lab space in 
a well-maintained building serving as an 
important recruitment tool.

Our institution uses square footage of 
lab space as the primary datum, without 
information on quality; from the outset, 
then, the committee had to ignore 
issues such as age of the building, 
years since renovation, reliability of 
infrastructure, and other measures of 
space quality. Furthermore, centrally 
collected data on lab space assignments 
by gender were available only for faculty 
with externally funded research; new 
hires as well as more senior faculty 
without funding were not included 
in that database, and centralized data 
did not allow us to examine usage of 
shared space, equipment space, and 
office space. One of our colleges had 
conducted its own space inventory that 
was comprehensive, but for the other 
colleges the committee had incomplete 
data focusing solely on square footage 
of research laboratory space.

The committee discussed issues 
concerning lab space assignment, 
for which decisions are local and 
idiosyncratic. A scientist with 2 
graduate students and 1 postdoctoral 
researcher requires fewer benches than 
a colleague with 15 graduate students 
and 6 postdoctoral researchers. Those 
who travel to do their research (e.g., 
tropical ecologists, field geologists, 
high-energy physicists, astronomers) 
command less space than those who 
gather data primarily in Ohio State labs. 
Thus the amount of space assigned to 
a faculty member reflects a myriad of 
variables invisible to IR staff.



SPRING 2015 VOLUME | PAGE 15 

Despite those complications, the 
committee did have some a priori 
expectations. Overall, junior faculty 
require less space than senior 
colleagues, leading us to include rank 
as a covariate. Similarly, the amount of 
external funding can drive space needs. 
Finally, the ethos of space assignments 
is relatively constant within a 
department. The committee ultimately 
agreed that the data could be 
analyzed via a regression model with 
rank, gender, total external funding, 
and department as independent 
variables, but were aware of numerous 
unmeasured factors that could explain 
additional variance.

Teaching Assignments
Teaching includes a variety of different 
modalities, and each institution—
and, at Ohio State, each college 
within each institution—sets its own 
definition of how teaching is measured. 
In the sciences, teaching includes 
classroom lecturing, overseeing 
graduate research assistants who offer 
laboratories and recitations, proctoring 
and grading, leading seminars and 
colloquia, supervising graduate and 
undergraduate research students, 
and supervising students in clinics. 
Disciplines vary in the distribution 
of courses offered (some have heavy 
service course responsibilities while 
others primarily teach their own 
majors), norms for team-teaching, class 
size, numbers of graduate students, 
and so on.
The committee examined centrally 
collected data that sparked 
illuminating discussions that revealed 
widely divergent department mores. 
First, the committee learned that units 
vary substantially in how they report 

instructors of record; for example, a 
single course may be taught by four or 
five faculty, with only one recorded in 
the registrar’s database. Indeed, one 
of our college representatives stressed 
that those central data failed entirely to 
capture the relevant effort information; 
for that unit the committee used 
college-supplied teaching data.

Faculty discussions of practices in 
their own departments enlightened 
committee members, faculty, and 
staff alike as to how differently units 
handled academic-year release time. 
Faculty who secure external funding 
can use those dollars to support a 
portion of their salary, which in turn 
releases them from teaching. In some 
units, garnering such release time is 
the expectation whereas in others it is 
disallowed. Not surprisingly, faculty in 
those units for which release time is an 
expectation teach less than those in 
which it is not permitted.

Third, considerable variation in 
teaching load derives from enrollments 
in courses collectively binned as 
independent studies courses; these 
include readings, seminars, research 
supervision, and other kinds of tutorial 
efforts. Most units hold expectations 
for faculty to engage in such activities, 
but they are rarely codified. Rather, 
faculty have broad discretion 
accepting students to their research 
groups, offering seminar courses, 
and supervising undergraduate 
internships. Furthermore, many 
faculty members supervise students 
who are not enrolled for credit. These 
kinds of teaching efforts typically are 
not assigned as part of a workload 
discussion, but rather are undertaken 

on the basis of individual faculty 
initiative. Even so, units can use data on 
independent studies teaching to make 
assignments for didactic teaching, 
such as providing a course release 
for a faculty member supervising 
independent studies for 12 graduate 
students.

Fourth, didactic courses themselves 
vary tremendously in terms of the 
kinds of effort required of faculty. 
Large introductory courses require 
extensive administrative overhead 
(managing the course Web site, 
answering endless emails, overseeing 
teaching assistants), whereas smaller 
upper-division and graduate courses 
require a different kind of preparation. 
Committee discussions on this topic 
again uncovered variable cultures 
across disciplines in terms of the 
mix of such courses offered, as well 
as the kinds of students who enroll. 
Some units offer numerous courses 
to benefit students outside their 
discipline (general education or other 
service courses), while others serve 
primarily their own majors. After 
discussion of these complications, we 
settled on three categories of didactic 
instruction (introductory, advanced 
undergraduate, and graduate/
professional).

The committee wrestled with several 
measures of teaching effort, including 
the number of courses taught, the 
number of credits hours taught, the 
number of contact hours associated 
with a course, and the number of 
students taught per term. Of those 
four, the committee settled on the first 
two as the best metrics for comparing 
teaching loads among faculty. 
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Ultimately, we settled on regression 
analysis of number of courses and 
number of credit hours as a function 
of gender, faculty rank, discipline, and 
course level.

CONCLUSIONS
Gender did not explain variation in our 
analyses, which is heartening (Herbers 
& Desai 2012). Most importantly, that 
central result is credible because 
of the committee discussions that 
acknowledged nuance, and decisions 
that allowed for comparisons that 
minimize confounding variables. 
Analysis of faculty workload and 
access to resources are fraught with 
difficulties (Dennison 2011), and can 
best be accomplished when IR officers 
collaborate with those whose work 
they are studying: in other words, the 
faculty.

Our process took over a year to 
complete, including iterations of 
analyses and refinement of the baseline 
data. Committee members, each 
steeped in one discipline, continually 
learned from each other about how 
variable department cultures can be 
within one institution. Furthermore, 
we all learned about the power and 
limitations of centrally collected data 
as we strove to develop protocols 
for meaningful data analysis. Our 
experiences showed that involving 
faculty for analysis of data about their 
work is crucial to producing reliable 
and credible results.
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