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Abstract

Every term, institutions of higher education must make decisions about the class size for each class they offer, 

which can have implications for student outcomes, satisfaction, and cost. These decisions must be made 

within the current higher education landscape of tightening budgets and calls for increased productivity. 

Beyond institution decision making, prospective students and their families may use class size as one factor 

in deciding whether an institution might be a good fit for them. The current measure of class size found in 

university fact books, and subsequently sent to numerous ranking groups such as U.S. News & World Report 

(hereafter U.S. News), is an inadequate gauge of the student experience in the classroom, as measured 

by the percent of time students spend in classes of varying sizes. The current measure does not weight 

for enrollment, credits, or multiple components of a class, which results in a misleading representation of 

the student experience of class size. This paper will discuss these issues in depth, explain how class size 

varies across institutions, and offer recommendations on how to reweight class size in the Common Data 

Set to accurately describe it from the student’s perspective. Institutions could use this new metric to better 

understand class size, and subsequently to understand the student experience and cost of a class, while 

prospective students and their families could use the metric to gain a clearer picture of the class sizes they 

are likely to experience on campus.
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INTRODUCTION
Organizing class delivery is a key operational 

decision for institutions of higher education. Each 

term these institutions must decide how many 

students will be taught within each section given 

the classes they offer, the faculty and instructors 

they have available to teach, and the confines of 

physical spaces they have on campus. Within these 

constraints, institutions must decide how to deliver 

classes. Consider a popular class taken by nearly 

every first-year student: Should this class be taught 

as one large lecture by a famous professor, many 

small sections taught by graduate students, or a 

combination of the two? Should small classes target 

freshmen who are acclimating to college or seniors 

as they specialize in their field?

Institutions, particularly public institutions, make 

these decisions within the current context of 

increased accountability and decreased resources. 

Traditional wisdom argues that smaller classes 

increase engagement, facilitate student-faculty 

interactions, and improve student success. The 

opportunity to learn from prominent scholars in the 

field is also considered a strength of undergraduate 

education at research universities. However, smaller 

classes and senior faculty are costlier and their use 

comes at the expense of other ways of enriching 

and supporting the undergraduate student 

experience. As Courant and Turner (forthcoming) 

argue, institutions have an interest in providing 

curriculum efficiently, meaning they must strike a 

balance between quality, costs, and tuition revenue. 

If an institution or department has an influx of 

students, it must decide whether it will increase 

the size of its faculty or the class size of its courses. 

Therefore, decisions about class size have first-order 

influence on student success and institutional costs. 

From the student perspective, class size could be 

influential in the college choice process, with some 

students seeking intimate class settings with small 

class sizes, and others preferring to blend in to a 

large classroom. Students and their families rely 

on institutional websites and rankings, such as 

Princeton Review or U.S. News, and other publicly 

available data for information about class size. These 

data are typically drawn from the Common Data Set 

(CDS), which is a collaborative effort among data 

providers and publishers to improve the quality and 

accuracy of information provided to prospective 

students, and to reduce the reporting burden on 

data providers (CDS Initiative, 2018). While it is 

helpful to have a measure that can be reported 

across multiple campuses, the class size metric 

used by the CDS is measured at the classroom level 

rather than at the student level. This difference in 

measurement leads to a disconnect between the 

metric and the phenomena it is trying to describe, as 

described in the following example.

Imagine a high school student researching her 

nearby public, research university as a prospective 

student. She sees that, according to U.S. News 

in 2018, only 17% of classes have more than 50 

students, and 57% of classes have fewer than 20 

students. The student thinks, What luck! She thinks 

she can attend a high-quality research institution 

while spending most of her time in small classes. 

After graduation from that college, the same 

student looks back and sees that she spent more 

than 41% of her time in classes with more than 

50 students, and only 20% of her time in classes 

with fewer than 20 students. These differences in 

the perception versus reality are not exaggerated, 

but rather are many students’ average experience. 

This paper will show that the measure of class size 

calculated for the CDS, and subsequently used by 

many other sources, does not provide an accurate 

approximation of the true class size experienced 
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by students at the University of Michigan (U-M), a 

large, research university in the Midwest. By the 

term “student experience,” we mean the percent 

of time or credits spent in classes of varying sizes. 

The results of this case study could be replicated at 

any institution, with varying degrees of departure 

from the true student experience depending on the 

institution type and size. Specifically, this paper will 

argue for a new class size metric to be used in the 

CDS and will address the following questions:

Framing Questions

1|	 How does the standard definition of class size 

vary from the student experience?

2|	 How does a student-centric version of class size 

vary across an institution?

3|	 How can institutional researchers practically 

recalculate class size to better approximate 

the student experience without significantly 

increasing the burden of data providers?

Importance of the Topic and Literature 
Review

This topic is important for students, institutions, 

and the field of institutional research. From the 

student perspective, students and those assisting 

in their decisions need accurate and meaningful 

information to make the best decision about which 

college to attend. A small number of studies have 

shown that class size is an important factor for 

students as they select an institution (Drewes & 

Michael, 2006; Espinoza, Bradshaw, & Hausman, 

2002). This makes sense since lower class size is 

perceived to be linked to gains in student outcomes. 

Literature in the secondary setting is clear that lower 

class size is associated with gains across multiple 

areas, including test scores, noncognitive skills, 

college enrollment, and other outcomes (Angrist & 

Lavy, 1999; Chetty et al., 2010; Dee & West, 2011; 

Dynarski, Hyman, & Schanzenbach, 2013; Hoxby, 

2000; Krueger, 1999). However, in higher education 

the relationship between class size and outcomes 

is not well established, with studies finding either 

negligible association (Bettinger, Doss, Loeb, Rogers, 

& Taylor, 2017; Lande, Wright, & Bartholomew, 

2016; Stange & Umbricht, 2018; Wright, Bergom, 

& Lande, 2015) or a negative relationship between 

class size and outcomes (Bettinger & Long, 2018; De 

Giorgi, Pellizzari, & Woolston, 2012; Kokkelenberg, 

Dillon, & Christy, 2008). Institutions that gain a more 

accurate and more nuanced version of class size 

from the student experience perspective could 

aid prospective students in their decision-making 

process.

Class size is also important to institutions 

for planning purposes. Courant and Turner 

(forthcoming) argue that institutions must strike a 

balance between quality, costs, and tuition revenue. 

In recent years, institutions have been asked to 

cut back and do more with fewer resources, which 

would imply that increasing class size would be an 

appropriate strategy. In fact, class size is one of 

the most important drivers of instructional costs 

(Hemelt, Stange, Furquim, Simon, & Sawyer, 2018). 

However, lower class size is perceived to lead to 

better student outcomes and is subsequently tied to 

rankings such as those at U.S. News. This common 

perception pulls institutions to keep class size lower, 

putting institutions in a situation where a logical 

solution is to hire cheaper instructors, such as 

noncontingent faculty. The ultimate decision on how 

to strike this balance is not traditionally made at the 

institution level, but rather at the department level. 

Cross and Goldenberg (2009) found that the number 

of noncontingent faculty at elite research institutions 

rose significantly in the 1990s, which was due to 
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micro- (department-)level decisions. Departments 

(or colleges) that are particularly concerned with 

the quality (or perceived quality) of small class sizes 

would find it difficult to adequately assess how 

much time their students spend in classes of a given 

size with the current metric, which is at the class 

level. A new student experience version of class 

size would allow departments to compare the class 

size experience across multiple majors or between 

departments, which could assist in balancing 

the class size constraints for long-term planning. 

Having an accurate understanding of imbalances by 

class size across colleges, departments, or majors 

could help institutions pinpoint areas that need 

improvement. In addition, institutions could examine 

whether access to smaller classes is inequitable 

across certain student groups, such as among 

minority, first-generation, or first-year students.

We will argue that the current definition of class size 

used in the CDS Initiative (2018) is insufficient for 

both internal planning and external consumption. 

As institutional researchers, it is our job to provide 

meaningful and accurate information to both 

internal and external parties. While the traditional 

measure of class size may be accurate, this paper 

describes ways in which we could provide data that 

are more meaningful. Institutional researchers and 

higher education professionals have an obligation 

to update this metric to reflect the actual student 

experience.

DEFINING CLASS SIZE
Based on the conventions of the CDS, 

undergraduate class size is calculated based on 

the number of classes with a given class size range. 

Classes are divided into sections and subsections. 

A class section is an organized class that is offered 

by credit, is identified by discipline and number, 

meets at one or more stated times in a classroom or 

setting, and is not a subsection such as a laboratory 

or discussion section. A class subsection is a part of 

a class that is supplementary and meets separate 

from the lecture, such as laboratory, recitation, and 

discussions sections. In calculations of class size, 

we count only the sections of a class and discard 

the subsections. The CDS conventions consider 

any section or subsection with at least one degree-

seeking undergraduate student enrolled for credit 

to be an undergraduate class section, but exclude 

distance learning, noncredit, and specialized one-

on-one classes such as dissertation or thesis, music 

instruction, one-to-one readings, independent study, 

internships, and so on. If multiple classes are cross-

listed, then the set of classes are listed only once to 

avoid duplication (CDS Initiative, 2018). This means 

that we count stand-alone classes, defined as having 

only one component, once per section in the class 

section portion.

For classes with multiple components, such as a 

lecture section combined with a lab or discussion 

section, we count each lecture section once in the 

class section portion while we count each associated 

lab or discussion section once in the class 

subsection table. In traditional class size metrics, 

the CDS counts only the class section portion of the 

class while the CDS discards the subsection from the 

calculation. This metric is relatively easy to compute 

and is comparable across campuses, but it may not 

be representative of the student experience.

We define “student experience class size” as the 

percent of time spent by a student in classes of 

various sizes, using credits as a proxy for time.1  

Calculations for this metric will be discussed later in 

1. We assume that each credit associated with a class is approximately 50 minutes of class time. While this pattern is not universal across U-M, the calculation 
is easy to make and should be readily accessible in any institution’s data warehouse. A more complicated, but 100% accurate approach, would be to use the 
day and time location to derive the true number of minutes spent in each section. These data might not be accessible and would require substantial coding to 
calculate. We tested both approaches and our simplified approach did not meaningfully differ.
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this paper. Figure 1 shows the difference between 

the CDS method and our new student experience 

method of computing class size. Sources that are 

often used as references for prospective students 

and institutions, such as U.S. News and institutional 

websites, draw data from the CDS. The CDS metric 

describes the share of classes in a given range 

rather than the share of time spent in classes of 

varying sizes. According to the U.S. News and the 

U-M websites, 84% of classes at U-M have fewer 

than 50 students, and 57% have fewer than 20 

students. However, using our student experience 

class size metric, only 19% of a student’s classroom 

time is spent in classes with fewer than 20 students 

and nearly 30% of their time is spent in classes with 

at least 100 other students. Why do these metrics 

differ so drastically?

There are three primary reasons driving these 

differences. First, the traditional measure for class 

size is not weighted by the number of students 

enrolled. A 500-student section and a 5-student 

section both count as one class, even though 

many more students experience the larger section. 

Second, classes are not weighted by the number of 

credits associated with the class. A class worth five 

credits counts for the same as a class worth one 

credit, even though students likely spend five times 

as much time in the first class. Finally, the traditional 

measure does not incorporate subsections. It is 

typical for large lecture classes to have multiple 

components, such as a large lecture of 200 that 

meets for 2 hours per week and 10 associated small 

discussion groups of 20 students each that meet 

for 1 hour per week. Students spend 67% of their 

classroom time in a large lecture and 33% of their 

time in a small discussion, but the traditional metric 

Figure 1. Class Size by Various Sources
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counts only the lecture portion. This means the 

200-person lecture counts as one class, ignoring the 

subsections. Our new student experience class size 

metric accounts for these three factors, as will be 

explained in detail in the methods section. This new 

metric provides a more accurate representation of 

the student experience within the classroom.

Given the immense difference between the 

traditional class size measure and our student 

experience version, it is only natural to question why 

institutions have not moved to a different calculation 

of class size. To be clear, it is not the authors’ belief 

that institutions are purposely trying to push an 

inaccurate measure of class size. The traditional 

class size measure does hold value in describing the 

number of classes available to students of various 

class sizes. U-M students can choose from many 

small classes and could theoretically construct a set 

of classes to minimize the amount of time spent in 

large classes. In reality, though, several forces could 

make it difficult for institutions to switch to a student 

experience version of class size.

First, there are serious consequences in rankings 

and optics for many institutions, particularly larger 

ones. U.S. News currently provides points to 

institutions based on the share of small sections (19 

and fewer students), partial points for the share of 

medium sections (20–49 students), and no points for 

large sections (50 or more students).2  Universities 

that use larger class sizes to teach a large number 

of students will see their rankings negatively 

impacted if classes were weighted by the number 

of students taking the class. The shift in class size 

would also create poor optics for prospective 

students and may impact whether they choose one 

institution over another. The same would be true 

for a student experience measurement of instructor 

type, where larger research institutions are much 

more likely to use graduate students as instructors. 

In addition, having non-tenure track instructors 

primarily responsible for teaching large classes, and 

therefore many students, could have bad optics 

for institutions. Therefore, there is a disincentive 

for a single college, or a small group of colleges, to 

recalculate their class size based on the student 

experience. The exception would be institutions 

that uniformly have very small classes, such as 

small liberal arts colleges, that would see little or no 

change in their calculation of class size.

A second difficulty is measuring class size from the 

student perspective. Leaders of the CDS Initiative 

already consider the measurement of class size to 

be the second-most difficult part of the CDS, with 

only calculations of financial aid deemed more 

difficult (Bernstein, Sauermelch, Morse, & Lebo, 

2015). At U-M, measures required to recalculate 

class size to the student perspective are readily 

available and clean, and require little manipulation 

to combine. Institutions vary significantly in their 

data capacity and availability of staff to adjust the 

CDS measures. Given these challenges, the authors 

of this study still believe that shifting to a student 

experience version of class size would provide many 

benefits, including an accurate representation of 

the amount of time students spend in classes of 

varying sizes and with various instructor types. This 

shift would be beneficial for institutions for planning 

purposes as well as for prospective students as 

they weigh various institutions during the selection 

process.

2. This recently changed from a system that provided points for small courses and penalties for large courses in an effort to minimize gaming of the system 
(Supiano, 2018). However, there is no evidence provided to back up this claim. Regardless of whether the new or old system is used, having a larger number of 
small classes is rewarded, and the metric is at the course level, which does not appropriately describe the student experience.



10Fall 2019 Volume

METHODS
The purpose of this study is to create a student 

experience version of class size. We drew data 

from the U-M data warehouse, specifically from the 

Learning Analytics Data Architecture (LARC) and 

College Resource Analysis System (CRAS).3  LARC is a 

flattened, research-friendly version of the raw data 

warehouse that houses data about students, their 

background, their progress, and their coursework. 

CRAS is a data warehouse system that houses data 

about classes and the instructors that teach them. 

The sample included first-time freshman students in 

cohorts between 2001 and 2012, examining classes 

taken within 4 years of entry. Freshman cohorts are 

between approximately 5,500 and 6,500 students 

during this period. Individual study classes and one-

on-one classes were removed from the sample, as 

were classes with no CRAS information, including 

subjects such as medicine, dentistry, armed forces, 

study abroad, and classes through the Committee 

on Institutional Cooperation program. The final 

sample included 70,426 first-time students and 

3,398,320 class sections taken in these students’ first 

4 years of study, between 2001 and 2016.

Calculating Class Size

As previously noted, we made three adjustments to 

the traditional measure of class size: (1) weighting 

for number of students, (2) weighting for credits 

associated with the section, and (3) incorporating 

subsections. Table 1 provides an example of how 

3. LARC is unique to U-M, although some institutions have developed a similar research-friendly database. CRAS is also unique to U-M because there are some 
calculations made with institution-specific formulas. However, these databases comprise data that are regularly available (although not always clean) at all 
institutions, such as student and class information, classes taken, and the number of students in a given class.

Table 1. Example of Distribution of Class Credits in Our Framework

Number of 
Students Class 1 Class 2 Class 3 Class 4

Total 
Credits

% of 
Total

2–9

10–19

20–29 1 (Lab) 1 (Discussion) 2 17%

30–39

40–49 3 (Lecture) 3 25%

50–99 2 (Lecture) 2 17%

100–199 2 (Lecture) 2 17%

200+ 3 (Lecture) 3 25%

Total 
Credits

3 4 3 2 12 100%
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we accounted for credits and subsections in our 

student experience framework.

This example shows a hypothetical student’s 

coursework for one term. This student took four 

classes in this term for a total of 12 credits. Classes 

1 and 2 had multiple components, with a lecture 

and either a discussion or a lab. We divided credits 

for these classes among the section and subsection 

based on the amount of time or credits associated 

with each component. Then we put each component 

into the appropriate class size bin, shown in the left 

column. Classes 3 and 4 were stand-alone classes 

that contained only a lecture component, so there 

was no need to divide their credits. Once we had 

distributed all the credits for each class to the 

appropriate class size bin, we totaled credits across 

each class size row. In doing so, we accounted for 

credits and the multicomponent nature of classes, 

fixing two of the issues with the standard definition 

of class size. The third piece relates to weighting 

class size by the number of students in the class. In 

this framework, we theoretically create a table like 

this for each student and each term the student 

attends. We then summed across every student 

and term. Since the level of observation is a class 

enrollment, we naturally weight by the number 

of students in the class because there will be 50 

observations if there are 50 students in a class, or 

5 observations for a class with 5 students. A basic 

assumption made by this framework is that one 

credit is equal to approximately 1 hour of class 

time. While there are a small number of classes that 

violate this assumption, we do not believe it would 

impact our overall results in a meaningful way. It is 

also important to note that enrollments for cross-

listed classes were combined into the home class. 

At U-M, if there are multiple cross-listed sections, 

one is considered the home class and the rest are 

considered away classes. This means that if there 

are three cross-listed sections with 12, 15, and 18 

students, our data would show one class with 45 

students.

Once we calculated the percent of time (using 

credits as a proxy) that a student earned in various 

class sizes across his first four years, we calculated 

percentiles for each enrollment group across the 

entire university by college, by major, and by year 

in school.4  College and major are determined by 

the last college or major associated with a student. 

If a student graduated with a bachelor’s degree, we 

used his graduating college or major. If a student 

departed prior to completing his degree, we used 

the last known college and major associated with 

him.5  Rather than showing just the median or mean, 

we chose to use five percentiles (10th, 25th, 50th, 

75th, and 90th) to show the distribution of student 

experiences. Finally, we mapped these percentiles 

into figures that show the range of student 

experiences for a given class size.

CASE STUDY
This section will examine how class size varies 

across U-M. The figures in this section represent 

the distribution of time that students spend in 

classrooms of varying sizes. Class size was grouped 

into eight bins of varying sizes to create a smooth 

figure and to mimic the traditional measure of 

class size. Figure 2 shows the distribution of class 

size across the entire university. The black line 

represents the median student, the dark gray 

shaded area represents the 25th to 75th percentile, 

and the light gray shaded area represents the 10th 

4. Results show the 10th, 25th, 50th, 75th, and 90th percentile for each enrollment group. The term “college” refers to an academic college, such as engineering, 
liberal arts and science, or education.

5. We considered removing these students but decided that doing so could introduce some selection bias. For example, students that drop out may select larger 
courses; if we remove them, we may distort the student experience.
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to 90th percentiles.

To interpret this figure, consider the enrollment 

group of 200+ students. The black line indicates that 

the median U-M student spent about 15% of her 

time in classes with 200 or more students. Moving 

above the black line to the edge of the dark gray 

area, we see that about a quarter of students spent 

about 23%–24% of their time in classes with 200 or 

more students. The outer edge of the light gray area 

indicates that 10% of students at U-M spent more 

than 30% of their time in these very large classes. If 

we move to the 20–29 enrollment group, we see that 

the median student spent about 20% of her time 

in classes with 20–29 students. There is a very wide 

range of experiences (25%) between the 10th and 

90th percentiles, indicating that students may spend 

vastly different amounts of time in classes with 

20–29 students. The spread is only about 10% wide 

for enrollment groups between 30 and 49 students, 

indicating there is less variability in the percent of 

time spent in medium-size classes. Overall, it is clear 

that students’ time is more heavily weighted in both 

large (50+ students) and small (10–29 students) 

classes. This means that students spend their time 

in classes of varying sizes, but classes at U-M tend to 

favor high or low enrollments on average. This also 

implies that very large classes likely have a smaller 

enrollment component tied to them, such as a 

discussion or lab section.

At a university the size of U-M, with an 

undergraduate population of almost 30,000, it 

is natural to assume that student experiences 

may vary greatly across the institution, such as by 

college, major, or year in school. Figure 3 shows 

the distribution of class size in the College of 

Engineering, which we chose because it is the 

Figure 2. Percent of Time Spent by Size Across the University of Michigan
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second-largest college on campus and differs 

significantly from the trends for the median student. 

Once again, the black line and gray shaded areas 

represent the percentiles for students in a given 

college. We added the gray dotted line here to show 

the median U-M student from Figure 2, allowing 

us to examine how the college differs from the 

overall pattern at the university. In the College of 

Engineering students tend to take coursework with 

very different class sizes compared to the median 

U-M student. In particular, engineering students 

take fewer small classes (10–29 students) and 

very large classes (200+ students), and instead 

take more classes in the middle range (30–199 

students). Part of the difference could be attributed 

to deliberate planning by the College of Engineering 

and part could be related to the size of classrooms 

in the engineering buildings. Classroom caps, 

and subsequently enrollment caps, for classes 

in engineering tend to lie in the middle of the 

enrollment group distribution.

While not shown, we created figures for every 

college on campus. The trends of these figures show 

that class size differs significantly across colleges. 

The College of Literature, Science, and the Arts 

(LSA) has very similar trends to the median U-M 

student, in part because it is the largest college on 

campus. Given that more than 60% of students 

are in LSA, this college drives much of the median 

class size. As one would expect, smaller and more 

narrowly focused colleges such as the College of 

Architecture and Urban Planning, the College of 

Art and Design, and the College of Music, Theatre, 

and Dance had significantly higher levels of small 

classes (2–29 students) and fewer very large classes 

(200+ students). The College of Public Policy tends 

to mimic the trends of LSA, in part because students 

Figure 3. Percent of Time Spent by Enrollment Group in the College of Engineering
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spend their first two years in LSA before declaring 

their major. The College of Business had very high 

levels of medium-size classes (40–99 students) 

because many of its core classes have enrollments 

of 40 to 80 students.

Class size also varies in systematic ways by 

major, even within a college. Comparing the 

major of Arts and Ideas in the Humanities, a 

small, multidisciplinary major, to the major of 

Biopsychology, Cognition, and Neuroscience (BCN), 

a large, premed major, yielded large differences in 

class size. The median Arts and Ideas major spent 

about 50% of her time in classes with 20 or fewer 

students, which is twice the 25% of the median LSA 

student. Students in the BCN major, on the other 

hand, took a much larger share of large lectures, 

rising out of the 90th percentile for LSA students. 

They spent nearly 33% of their time in classes with 

more than 200 students, compared to only 20% of 

the median LSA student’s time. While we observed 

systematic differences between majors, we also 

found that there were some majors that had very 

similar class size structures.

A final way to observe how class size varies across 

an institution is by comparing class size by academic 

level. Rather than aggregating across a college 

or major, we aggregated by a student’s year in 

school (e.g., freshman, sophomore, junior, senior). 

Students in their first year typically fulfill their 

general education requirements, which tend to be 

classes taught to many students at once. By their 

junior or senior year, students tend to take many 

classes within their major of increasing depth and 

specialization, characterized by smaller class sizes. 

Splitting the data in this manner did yield interesting 

differences over time. As shown by the dotted line in 

Figure 4. Class Size Within the College of Engineering by Academic Year
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Figure 4, students in the College of Engineering took 

similar coursework to LSA students in their first year 

compared to the median U-M student from Figure 

2, taking mainly classes consisting of large lecture 

and small discussion groups. This is likely because 

students are fulfilling their general education 

requirements. By their third year, the solid black line 

indicates the median engineering student deviates 

from the pattern at the college level and takes a 

much higher proportion of classes with 50–100 

other students; these classes comprise classes in 

the students’ major.

Overall, we created figures for every major, college, 

academic level, and student across campus to 

examine how class size varied across U-M. The 

median student within some majors had class size 

distributions that were very similar to the median 

student in their college and the university, but many 

majors differed significantly from the general trends. 

Similarly, there were some students within majors 

that varied significantly from the median student in 

their major. These figures show that class size can 

vary significantly across an institution. A department, 

college, or institution can use this information to gain 

a more nuanced understanding of the experiences 

of their students. For example, if students that 

tend to take only large lectures or small discussion 

classes perform worse, then an institution could 

adjust its advising to promote students to take 

classes of varying sizes. Similarly, an institution could 

identify whether certain student groups, such as 

first-generation students, may benefit from a more 

intimate classroom environment where they receive 

more attention from instructors.

HOW SHOULD WE 
MEASURE CLASS SIZE?
This paper has shown that the traditional measure 

of class size is not sufficient if it is meant to provide 

information about a student’s actual experience 

in the classroom. Previous research has shown 

that increasing class size has a mixed but generally 

negative impact on student learning and satisfaction. 

Accurately measuring class size is also important 

to institutions because it impacts productivity. For 

example, increasing or decreasing the class size of 

introductory calculus, a class that most students on 

campus take, can have vast implications for the cost 

of the class. If an institution wanted to recalculate 

class size with the student experience at the core, 

what would it look like?

We will first consider two simple adjustments: 

weighting for credits and weighting for students. 

Table 2 shows the distribution of class size given 

four different calculations and Figure 5 provides 

a visual representation of the table. The first 

calculation is the traditional measure of class size, 

with no adjustments. This means there is one 

observation per lecture. The second column weights 

the traditional measure by number of credits. A 

class of four credits is now worth twice as much as 

a class of two credits. This slightly shifts the class 

size distribution down because large class sections 

have corresponding subsections. Consider a class 

worth three credits, two earned in a lecture and one 

earned in a lab. Since the lab, or subsection, is not 

counted in the traditional measure, one of the three 

credits is discarded, deflating the value of a large 

class. The third column accounts for subsections 

and credits, appropriately distributing all the credits 

associated with each class. A class worth three 

credits including a lecture and a lab, as described 

above, is now fully included in the metric for class 
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size (Column 3). This lowers class size considerably 

because we are not removing the subsection but 

instead including it in our calculation. Subsections 

tend to be smaller, which drives the distribution 

down.

The fourth column shows class size distribution if 

we weighted only for the number of students in a 

class. Using this calculation, a large lecture of 500 

students is counted 500 times, while a small class 

of 5 students is counted only 5 times. As expected, 

this dramatically shifts the distribution of class size 

upward, nearly flipping the distribution of class size 

from the traditional measure. Column 5 accounts 

for weighting by credits and students, and includes 

subsections simultaneously. This gets closer to 

the perfect measure of the student experience 

described earlier in this paper and vastly improves 

the understanding of class size for institutions 

and potential students. Figure 5 shows a visual 

representation of each strategy for calculating 

class size. We can see that the traditional measure 

(nonstudent experience), weighting for credits, and 

weighting for subsections are very similar, with 

slight increasing low enrollments (fewer than 30) 

and decreasing other enrollments (30–200+) after 

accounting for subsections. Once we weight for 

students there is an immediate shift, nearly flipping 

the distribution. However, this shift goes too far; 

accounting for credits and subsections provides a 

balance between the three strategies.

It is important to note that our calculation of class 

size used student-level micro data to account for 

these changes, in part due to other related research. 

However, this calculation may be burdensome for 

institutions. A simpler way to achieve the same 

results would be to take the class-level data used for 

Table 2. Class Size by Three Different Calculations

Class Size

Traditional 
Measures 

(1)

Weight for 
Credits 

(2)

Account for 
Subsections 

(3)

Weight for 
Students 

(4)

Weight for 
All Changes 

(5)

2–9 13.9% 14.1% 11.4% 2.0% 2.5%

10–19 32.1% 32.5% 31.1% 13.0% 15.4%

20–29 23.0% 23.6% 34.0% 14.2% 21.9%

30–39 8.2% 8.5% 9.4% 6.8% 9.3%

40–49 4.4% 4.3% 3.2% 4.6% 4.4%

50–99 10.5% 10.2% 6.4% 18.2% 15.8%

100–199 4.9% 4.5% 2.9% 17.2% 13.8%

200+ 2.9% 2.4% 1.7% 24.0% 16.8%
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the CDS and simply weight each class section and 

subsection by the number of students and credits. 

This simplifies the process and limits the resources 

required to pull and process the data.

LIMITATIONS OF 
NEW CLASS SIZE 
MEASUREMENT
While this new class size metric may provide a 

clearer picture of the student experience at an 

institution, it does not come without limitations 

and challenges. The first challenge is the 

technical barriers of calculating the new class size 

measurement. For example, institutions may house 

the required variables in different data systems, but 

replacing or adding a new metric could be difficult to 

implement and could increase the reporting burden 

on institutions. Most of what is required to adjust 

to this new metric is already required for the CDS 

version of class size. Institutions must calculate the 

number of sections and subsections of a given class 

size. This means they must know the exact class size 

for every section and subsection. The only missing 

piece is to allocate time between the section and 

the subsection. At U-M, a field for distributed hours 

is contained in the data warehouse, but that may 

not be the case for all institutions, some of which 

may not even use the Carnegie credit system. For 

these institutions, a calculation could be made to 

allocate credits based on the amount of classroom 

time for each section and subsection. For example, a 

three-credit class that meets for 2 hours in a lecture 

section and 1 hour in a discussion section could split 

the class into two credits for the lecture and one 

Figure 5. Class Meeting Size Distribution by Five Different Methods
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credit for the discussion. This would require some 

up-front work to create these calculations based on 

day/time information, but is not unmanageable.

The second set of challenges relate to the nuance 

that is inherent in the new metric. Presenting 

students with a single metric for an entire university 

is simple and easy to explain but leaves out a lot of 

nuance. If an institution were to recreate the figures 

in this paper, it would introduce some challenges 

for interpretation. As shown in Figure 3, there are 

stark differences in class size between engineering 

and LSA students; the same differences can be 

shown between majors or year in school. The large 

number combinations and comparisons by college, 

major, and year in school present challenges when 

trying to show or explain the data to prospective 

or current students. While a single, institution-wide 

metric leaves out nuance, it is a vast improvement 

over the current metric used by institutions and 

rankings. If an institution wanted to provide more 

nuance, it could create an interactive dashboard 

for prospective and current students to view the 

nuanced version of class size presented in the 

figures of this paper. Students could select a college 

or major from a list to see what the distribution 

of class size looks like for students in that major. 

Institutions could pare down these figures to 

show only the median for simplicity or to provide 

a detailed explanation of how the percentiles 

work when students first use the new dashboard. 

However, with a nuanced view an institution could 

also show students that class size may be lower for a 

given major, or how class size may lower as students 

progress toward their degrees.

DISCUSSION AND 
FUTURE WORK
As institutional researchers it is imperative for us to 

provide data that are both accurate and meaningful. 

This paper argues that the traditional measure of 

class size is not a meaningful representation of 

what students experience in the classroom. The 

traditional measure of class size illustrates only the 

proportion of classes that are small, not the amount 

of time that students spend in small classes. This 

is problematic for prospective students, who could 

use meaningful class size data to determine where 

they want to attend college. It is also problematic 

for institutions, which may not understand the 

extent of large or small classroom experiences on 

their campuses. While limited, previous research in 

higher education suggests that class size matters for 

student outcomes and satisfaction in classes.

This paper suggests that the measurement of class 

size could be altered by weighting for the number 

of students and credits associated with the section, 

and accounting for subsections. We suggest that 

institutional researchers consider revamping their 

class size metric to reflect the student experience 

in the classroom more accurately. Nearly all the 

required components (number of students in 

each class and section/subsection, and number of 

classes) for this calculation are used by the current 

CDS metric. We believe that distributed credits, the 

potential missing component, is likely captured and 

readily available at many institutions, which would 

make this adjustment relatively easy. While this could 

require an investment of time on behalf of some 

institutions, we believe the potential benefits will 

outweigh the investment. At a minimum, we suggest 

that institutional research professionals consider 

reweighting their current metric of class size by the 

number of students in each lecture section. This new 
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metric provides a more accurate description of class 

size from the student experience.

Future work on this topic could yield more 

improvements in the description of the student 

experience at institutions of higher education. First, 

the range of class size also varies significantly across 

colleges and departments, indicating that a simple 

institution-wide metric masks important differences 

for students who plan to major in different fields. 

Institutions could take this idea one step further 

to create an interactive dashboard that allows 

prospective and current students the opportunity 

to see the range of class size experiences for majors 

in which they have interest. A second improvement 

institutions could make would be to pair data 

about class size and instructor type (e.g., IPEDS 

instructor type). By combining the percent of time 

spent in varying class sizes and varying instructor 

types, students will gain a clearer picture of what 

their classroom experience would be at a particular 

institution.
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INTRODUCTION
The current challenges facing higher education 

administrators create myriad reasons to find 

a crystal ball of sorts to effectively forecast 

enrollments, predict how many current students will 

stay at the institution, forecast new students, and 

adequately estimate revenues. These challenges 

have become only more pressing in recent years.

More than 20 years ago, when public college and 

university revenues were ample, administrators 

were not readily concerned about the future of 

college enrollments or student persistence. State 

appropriations were healthy and usually made up 

more than half of an institution’s revenue source. 

Moreover, with lower tuition more students could 

afford to obtain a degree without going into 

significant financial debt (Coomes, 2000).

The costs to run higher education have skyrocketed, 

however, causing today’s institutions to seek scarce 

resources within an ever-diminishing financial 

pool. As states tackle other pressing issues such 

as infrastructure, entitlements, and prisons, the 

amount they give to higher education naturally 

wanes. Decreased state revenue, therefore, 

compels institutions to increase tuition to make 

up the difference. According to Seltzer (2017), 

for every $1,000 cut from per student state and 

local appropriations, the average student can be 

expected to pay $257 more per year in tuition and 

fees. He further notes that this rate is rising.

In addition to decreases in state revenues, higher 

education administrators are under increasing 

pressure to be accountable to federal and state 

governments as well as to regional and discipline-

based accreditors. This accountability is increasingly 

seen in tougher reporting standards, outcomes-

based funding formulae, and mandated student 

achievement thresholds.

The closest resource to a crystal ball available to 

administrators is a set of mathematical prediction 

tools. These prediction tools range from simple 

formulae contained in spreadsheets to much more 

complicated regression, autoregressive integrated 

moving average (ARIMA), and econometric time 

series models.

According to Day (1997), current predictive tools 

that are statistically based rely on the institution’s 

ability to access and manipulate large datasets 

and individual student-record data. While more-

complicated statistical models incorporate variables 

such as tuition cost, high school graduate numbers, 

economic factors, and labor-market demand, 

other models look more specifically at institutional 

indicators such as high school grade point averages 

of entering freshmen, as well as the retention, 

progression, and graduation rates of students.

One such model, the Markov chain, has been 

relatively underutilized as an enrollment projection 

tool in higher education. When used properly, 

however, it can aid institutions in determining 

progression of students. Specifically, Markov chains 

are unique from more-traditional ARIMA and 

regression prediction tools in that the following is 

true:

1|	 Markov chains can give accurate enrollment 

predictions with only the previous year’s data. 

These predictions can be helpful when large 

longitudinal databases are not available.

2|	 They can generate predictions on segments of 

a group of students rather than on the entire 

population. Other models often require the use 

of the entire population.
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3|	 The almost intuitive nature of the Markov 

chain lends well to changes in student flow 

characteristics that often cannot be explained 

by a complex statistical formula.

Moreover, Markov chains might be particularly 

helpful in determining progression of students 

during benchmark years when enrollments vary 

significantly due to state mandates and policies, 

or due to institutional changes in admission 

standards. The purpose of this study is to show how 

a Southeastern, masters-level (Larger Programs) 

public institution utilized the unique properties of 

this model to create a tool to better understand 

credit hour flow and student persistence.

Enrollment Management’s Problem with 
Leaky Pipes and the Bulge in the Boa

While enrollment management has clearly evolved 

since the inception of the field of enrollment 

management in the 1970s, some fundamental 

processes have essentially stayed the same. 

Institutions have always wanted to attract the right 

students who fit well within the institution’s role, 

scope, and mission. Once matriculated into the 

institution, there is also a strong desire for students 

to adequately progress through their program 

and graduate within a reasonable amount of 

time (Hossler, 1984). As enrollment management 

developed through time, however, administrators 

became increasingly aware that college-age students 

were more difficult to enroll, higher tuition was 

causing some students to forgo their degree, 

and institutional loyalty was waning as students 

transferred to similar or different institutions. 

Furthermore, institutions have seen an increasing 

number of students who are not fully prepared for 

the rigors of college work, putting greater enrollment 

strain on institutions (Johnson, 2000).

After more than 40 years of enrollment management 

within higher education, it is not surprising that 

metaphorical associations have entered the lexicon 

of the profession as administrators try to better 

understand and predict student matriculation, 

persistence, and graduation. For instance, Ewell 

(1985), referred to students progressing and 

moving throughout their program as student flow, 

while Clagett (1991) discussed following the flow 

of student cohorts through to graduation. Luna 

(1999) used the concept of student flow to explain 

the various pathways by which the institution may 

retain students, and Torraco and Hamilton (2013) 

discussed the student flow of selected groups of 

minority students. Furthermore, many software 

companies have exploited the student flow 

metaphor to describe use of data to identify areas 

where leakage is present in student flow pipelines. It 

is easy, then, to see how the management of student 

retention can be associated with a pipeline and how 

administrators are busy trying to plug the leaks.

Markov chains are uniquely suited to identifying 

these leaks because they can model student flow 

as a set of transitions between several states, much 

like a set of pipes with various inflows, outflows, 

and interconnections. In addition to using the 

model to project enrollments, it is also possible to 

observe from year to year where students enter the 

absorbed state (i.e., do not return to the institution). 

Leakage within the student credit hour (SCH) flow 

pipeline occurs when students withdraw or stop out 

due to reasons that are academic, nonacademic, or 

both. If the model can isolate where the major leaks 

occur, the institution can identify causes and work 

to retain and maintain the flow of students within 

the pipeline. These leaks in the student flow pipeline 

can be detected and monitored from term to term 

so that the institution can develop strategies to 

maintain a healthier flow.
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Another colorful bit of jargon among enrollment 

management professionals is the idea of 

bulging enrollments. For example, Fallows and 

Ganeshananthan (2004) use the term “bulging 

of enrollments” to describe a significantly larger 

share of students needing financial aid or when, 

due to rising tuition costs, students bulge into 

less-expensive 2-year colleges. Herron (1988) uses 

the term “bulge in the boa” to define instances of 

oversupply in student populations quickly entering 

the student flow pipeline, much as a boa constrictor 

swallows a large meal. Liljegren and Saks (2017) 

added that these bulges can significantly affect 

higher education and its future. These bulges occur 

when large groups of students suddenly enter 

higher education, putting a strain on the student 

flow pipeline. As the bulge dissipates, its effects 

may remain, and it may redefine student flow for 

the future. With Markov chain models, institutions 

can monitor these bulges in the system so that they 

can address issues such as course offerings and 

instructor availability.

Markov Chains and Higher Education

A Markov chain is a type of projection model 

created by Russian mathematician Andrey Markov 

around 1906. It uses a stochastic (random) process 

to describe a sequence of events in which the 

probability of each event depends only on the state 

attained in the previous event.

The Markov chain is a stochastic rather than a 

deterministic model. Unlike a deterministic process 

where the output of the model is fully determined by 

the parameter values and by sets of previous states 

of these values, a stochastic process possesses 

inherent randomness: the same set of parameter 

values and initial conditions can lead to different 

outputs.

Take, for example, the scenario of an individual 

returning home from work. In a deterministic 

process, there is only one route (Route A) from 

work to home, and the amount of time to get home 

depends only on the variable speed of the driver. In 

a stochastic process, the individual will have multiple 

routes (Routes A, B, and C) from which to choose, 

and each of the routes intersects the other routes 

at various points. The randomness of the process 

occurs when the individual combines routes to go 

home, if she makes the choices at each intersection 

randomly. For example, the driver may take Route A 

part of the time, followed by Route C, then Route B, 

and back to Route A again, or take some completely 

different path. There are many random possibilities 

the individual may take to get home, leading to a 

variety of possible driving times.

Markov chains utilize transition matrices that 

represent the probabilities of transitioning from 

each possible state to each other possible state. 

These states can be absorbing or nonabsorbing: 

nonabsorbing states allow future transitions to other 

states while absorbing states do not.

Markov chains have been widely and successfully 

used in business applications, from predicting sales 

and stock prices to personnel planning and running 

machines. Markov chains also have been used in 

higher education, albeit with much less frequency.

In most studies where Markov chains were used in 

enrollment management, the various transitional 

states were categorized either by student 

classification or by other simpler dichotomous 

measures. Given the strength of the Markovian 

stochastic process in generating student flow 

probabilities using data only from the previous 

year, the process of classifying students into other 

kinds of states could be appealing. Such states 
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could include SCHs, student debt, and (on a more 

systemwide level) the transitioning from one 

institution or program to another. The possibilities 

are diverse.

One of the first to use Markov chains in determining 

enrollment projections was Oliver (1968) when 

he compared Markov chains to the much more 

established use (at that time) of grade progression 

ratios to predict enrollments at the University of 

California. According to Oliver’s study, enrollment 

forecasting made a prediction on the basis of 

historical information on past enrollment and 

admission trends. In determining a stochastic 

process, Oliver demonstrated that the fraction of 

students who leave one grade level (class status) i 

and progress to class status j is a fraction pij; that 

progress could also be time dependent. These 

fractions pij can also be interpreted as random 

transition probabilities. He determined that the 

process allowed for contributions in one grade level 

that were identified by their origins, such as prior 

grade level, returning to the same grade level, and 

new admissions (Oliver, 1968).

According to Hopkins and Massy (1981), the use of 

Markov chains allows the researcher to observe the 

flow of students from one classification level (i.e., 

freshman, sophomore, junior, senior) to the next 

class level. The chain also incorporates students who 

stay at the same class level from one year to the 

next. Therefore, the Markov chain for class level, as 

studied by Hopkins and Massy, can be described as 

follows:

1|	 The number of students in class level i who 

progress to class level j

2|	 The number of students in class level i who stay 

in the same level

3|	 The number of students who leave the 

institution (drop out, stop out, or graduate)

Similarly, Borden and Dalphin (1998) used Markov 

chains to develop a 1-year enrollment transition 

matrix to track how students of each class level 

progressed. The authors found that unique Markov 

chain models were valuable in measuring student 

progression without having to rely on 6-year 

graduation rate models, which could be ineffective 

due to the large time lags. Specifically, the model 

was built around a transition matrix where student 

flow was tracked from one year to the next, and the 

rates of transition from four nonabsorption states 

(i.e., freshman to sophomore) were placed into a 

matrix that was separate from the two absorption 

states (i.e., drop out, graduate).

Using the percentages in the two matrices, those 

students who continue in nonabsorption states were 

processed through the matrix using the established 

rates of transition until, asymptotically, all students 

reach the final absorption state.

Additionally, Borden and Dalphin (1998) developed 

discrete Markov chain processes to simulate 

the effect of changes in student body profile on 

graduation rates. In these models, the authors 

incorporated credit-load and grade performance 

categories. Their results indicated that, while 

there was a strong association between grade 

performance and persistence, it took very large 

changes in levels of student performance to impact 

retention and graduation rates modestly.

In a more narrowly focused study, Gagne (2015) 

used Markov chains to predict how English 

Language Institute (ELI) students progressed 

through science, technology, engineering, and 

math (STEM) programs. Specifically, the model 
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created transitional (nonabsorbing) states based 

on classification level and three absorbing states to 

include those students who left the institution, those 

who graduated from a STEM program, or those who 

graduated from a non-STEM program. Findings from 

their study indicated that the ELI students tended to 

progress at a higher rate than non-ELI students in 

STEM programs, and that ELI students who repeated 

the freshman year were more likely to repeat again 

than they were to transition to the sophomore year.

Correspondingly, a study by Pierre and Silver (2016) 

used Markov chain models to determine the length 

of time it took students to graduate from their 

institutions. As with previous studies, students 

were divided into nonabsorbing transitional states 

(i.e., freshman, sophomore, junior, senior) and 

absorbing states (i.e., graduate, nonreturning). Using 

the Markovian property, the future probability of 

transitioning from one state to another depended 

only on the present state of the process and was not 

influenced by its history. The study found that it took 

5.9 years for a freshman to graduate and 4.5 years 

for a sophomore to graduate from the institution.

Brezavšček, Bach, and Baggia (2017) successfully 

used Markov chain models to investigate the pattern 

of students’ enrollment and academic performance 

at a Slovenian institution of higher education. The 

model contained five transient or nonabsorbing 

states and two absorbing states. The authors used 

student records for a total of eight consecutive 

academic seasons, and estimated the students’ 

progression toward the next stage of the program. 

From those transition percentages they were able 

to obtain progression, graduation, and withdrawal 

probabilities.

As mentioned earlier, most Markov chain models 

involving enrollment management and prediction 

use student classification to create the various 

states of the model. Using student classification in 

model specification, however, could create states 

that are overly broad in nature since, at most 

semester-based colleges and universities, student 

classification varies by 30 hours.

Ewell (1985), who also used Markov chains to 

predict college enrollments, noted two limitations 

of the models. First, because the estimation of the 

probabilities rests on historical data, Markov chains 

may be sensitive to when the data were collected. 

This could be especially true with significant 

enrollment gains or declines from one year to 

the next. Second, according to Ewell, different 

subpopulations may behave in different ways, thus 

necessitating the need to disaggregate into smaller 

groupings.

However, the Markov chain’s attributes may allow 

a unique ability to detect the leaks and bulges. 

Because this type of projection model uses the 

stochastic process to describe a sequence of events 

in which the probability of each event depends only 

on the state attained in the previous event, changes 

to student flow are immediate and are not subject to 

potentially skewed results of the past. In short, the 

limitations mentioned by Ewell (1985) can be utilized 

when building the student flow matrices to detect 

significant shifts in enrollment and to determine 

which groups of students are leaving the institution 

at a higher rate.

METHODOLOGY
The current study used Markov chains to predict 

Fall enrollment at a Southeastern, masters-level 

(Larger Programs) public institution based on 

annual Fall semester enrollment for degree-seeking 
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undergraduates. The process involved obtaining 

data from the institution’s student information 

system and separating students into groupings 

based on their cumulative SCHs earned. Student 

flow was measured from Fall of year i to Fall of year 

i+1 based on whether students stayed within their 

credit hour category, moved into another credit 

hour category, or did not enroll at the institution. 

These student flow changes for each category were 

then summed and applied to year i+2 as a prediction 

of enrollment.

Within the model, at a given point in time each 

student has a particular state, and each student 

is treated as having a particular probability of 

transitioning to each other state or staying within 

the same state. Most of these states are based on 

the number of SCH the student has accumulated 

(i.e., the SCH category). Because the SCH category 

of a student was determined by the number of 

cumulative SCHs a student earned, most of the 

credit hour flow scenarios included students 

advancing to a higher credit hour category or 

students withdrawing or graduating. While it is rare 

for a student to move from a particular credit hour 

category to a lower category, it can happen through 

the transfer process when, after the student has 

enrolled, the current institution does not accept 

certain SCHs from the former institution.

The characteristic that makes this model a Markov 

chain is the fact that a given student’s transition 

probabilities between states are assumed to depend 

only on that student’s current state and not on any 

of the student’s previous states. This is a simplifying 

assumption that allows all students within a given 

state to be treated similarly regardless of their 

histories. Otherwise, the model would become much 

more complicated and difficult to apply.

The main parameters of the model are estimates 

of these transition probabilities. These transition 

probabilities are estimated by calculating the 

fractions of students that transitioned from each 

state to each other state relative to the number 

of students initially in that state in past years’ 

enrollment data. The other parameters of the model 

are the fractions of new incoming students by credit 

hour category. The total number of new incoming 

students is assumed to be fixed, thus the estimated 

number of incoming students by credit hour 

category follows from these fractions.

The model process is recursive in that predictions 

for Fall X are produced from the enrollment data 

from Fall X-2 and Fall X-1 and the subsequent flow 

rates from Fall X-2 to Fall X-1.

We can now describe the basic assumptions that we 

used to construct the predictive models:

1|	 Each model models flow from one year to the 

next and is named accordingly. For example, Fall 

2013 to Fall 2014 is known as the 13_14 Model 

and is based on the starting data for Fall 2013 

and the new student data from Fall 2014.

2|	 As the model is applied, the output headcount by 

SCH level for the (i+1)th year becomes the input 

headcount for the next iteration of the model.

3|	 When the model is applied to a future year, the 

total number of new students is assumed to be 

constant and the same as the number of new 

students for the (i+1)th year. The distribution of 

new students by SCH level is also assumed to be 

constant.

4|	 When the model is applied to a future year, it 

is assumed that the fractional student loss and 

fractional student continuation ratios are fixed 

by SCH level.
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5|	 When the model is applied to a future year it is 

assumed that the fractional flow from SCH level 

to SCH level is the same as for the year used to 

construct the model.

The model divides the undergraduates into 24 

6-SCH groupings. This method uses historic 

ratios of SCH student subsets gathered from the 

student information system to predict future Fall 

headcounts.

The 6-SCH groupings used in this model are 

individually less broad than the more familiar 

student classification levels. However, it is possible 

to aggregate the 6-SCH bins into a version of these 

student levels, which we define as

•	 Freshmen: ≤30 SCH

•	 Sophomore: >30 SCH and ≤60 SCH

•	 Junior: >60 SCH and ≤90 SCH

•	 Senior: >90 SCH

Note that these classification-level definitions do 

not exactly match the institution’s definitions. In 

using SCH groupings, the enrollment pipeline may 

be much more finely observed and enrollment 

patterns among students may be more precisely 

distinguished. While it is the goal of this study 

to develop a model to predict the coming Fall 

enrollment once the previous Fall enrollment is 

known, the model will not address enrollment by 

major, academic department, or college.

MODEL DESCRIPTION
The student information system parsed out students 

into the various SCH categories based on the 

predetermined groupings. These students were 

then tracked during the following Fall semester to 

determine student flow percentages. Within this 

study, student flow states are defined as:

1|	 students in credit hour group j who stayed 

within that group,

2|	 students in credit hour group j who moved to a 

different credit hour group,

3|	 students in other credit hour groups who 

moved to group j, and

4|	 students who were no longer enrolled at the 

institution.

Within this model, the following terms and symbols 

are used:

1|	 n is the number of SCH levels in the model (n = 

24 for the 6-SCH groupings).

2|	 hij is the ith Fall semester headcount for the jth 

SCH level.

3|	 Hi is the total undergraduate headcount for the 

ith semester.

4|	 lij is the number of the hij subset students not 

enrolled the next Fall semester.

5|	 Li is the total number of undergraduates 

enrolled in the ith Fall semester that are not 

enrolled in the (i+1)th Fall semester.

6|	 cij = hij – lij is number of continuing students in 

the jth SCH level.

7|	 Ci is the total number of undergraduates that 

enrolled in the ith Fall semester that are also 

enrolled in the (i+1)th Fall semester.
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8|	 dijk is the number of the continuing cij subset 

students that move from SCH level j to SCH level 

k from the ith Fall to the (i+1)th Fall.

9|	 wij is the number of the Ci subset students that 

flow from all other levels into level j.

10|	oij is the number of the cij subset students that 

flow out of level j into all other levels.

11|	s(i+1)j is the number of the new incoming students 

for the (i+1)th Fall semester where j is the SCH 

level.

12|	N(i+1) is the total number of incoming new 

undergraduate students for the (i+1)th 

semester.

With this terminology in place, the previously stated 

assumptions of the models can now be described 

algebraically:

1|	 When applying a model to a future period 

from Fall (i+1) to Fall (i+2), the total number of 

incoming students is assumed to be the same 

as it was for the period used to build the model, 

so it is assumed to have the value Ni+1. The 

fraction of new students by SCH level for that 

upcoming year is also assumed to be the same 

as it was in the period used to train the models, 

so each is assumed to be s(i+1)j  ⁄ Ni+1. Therefore, 

the estimated number of new students for a 

particular SCH level in that future year can be 

obtained by multiplying the value of this fraction 

by the estimated total number of students in 

the current year. That is, the estimate for the 

number of new students in the future year for 

that particular SCH level is given by  

s(i+1)j  ⁄ Ni+1 × Ni+1 = s(i+1)j.

2|	 The fractional loss and fractional continuation 

ratios are also assumed to be fixed by SCH level. 

In other words, for a future year these ratios 

are assumed to be lij  ⁄ hij and cij  ⁄ hij, the same as 

they were in the year used to build the model. 

Therefore, for the upcoming future period from 

Fall (i+1) to Fall (i+2), the estimated number of 

lost and continuing students for the jth SCH 

level are obtained by multiplying these ratios by 

the number of students h(i+1)j in that SCH level in 

the current Fall (i+1). This multiplication is lij  ⁄ hij 

× h(i+1)j to estimate lost students in the jth SCH 

level and cij  ⁄ hij × h(i+1)j to estimate continuing 

students in the jth SCH level.

3|	 Finally, the fractional flow from a particular SCH 

level to another SCH level is assumed to be 

fixed. In other words, for a future year these 

ratios are assumed to be dijk ⁄ cij, the same as 

they were in the year used to build the model. 

Therefore, for the upcoming future period from 

Fall (i+1) to Fall (i+2), the estimated number 

of students transitioning from SCH level j to 

SCH level k is given by the value of this ratio 

dijk ⁄ cij multiplied by the estimated number of 

continuing students in the jth SCH level.

The processes described above can be applied 

iteratively to obtain estimates for years even farther 

into the future by using the estimated values from 

one iteration as inputs into the next iteration.

Using the terms and formulae, we created a 

spreadsheet matrix (Table 1) that includes the 

various credit hour classifications as well as the 

nonabsorbed transient student states and the 

absorbed state of no longer enrolled.
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From this SCH flow structure, we can observe 

the relationships of credit hour flow between 

and among the various states, including flow into 

nonabsorbing states (staying or moving into another 

credit hour state) or into absorbing states (not 

enrolling at the institution). The relationships among 

the variables are as follows:

1|	 cij = ∑ 
n
k=1  dijk represents those current students 

who were in SCH level j who stayed at the 

institution.

2|	 oij = ∑ 
n
k=1
k≠j

 dijk  represents those current students 

who were in SCH level j who moved to all other 

SCH levels.

3|	 wik = ∑ 
n
j=1
j≠k

 dijk  represents those current students 

who were in SCH levels other than k who moved 

to SCH level k.

4|	 Hi = ∑ 
n
j=1  hij represents semester headcount at 

Fall semester i.

5|	 Li = ∑ 
n
j=1  lij represents those students at Fall 

semester i who did not reenroll.

6|	 Ci = ∑ 
n
j=1  cij represents those students at Fall 

semester i who did reenroll.

The following relationship,

∑ ∑
n

k=1

n

j=1
wik = oij

 

shows two equivalent ways of expressing the 

collection of students who remain at the institution 

and move from any SCH level to a different SCH 

level during the year. Conservation of student flow is 

obtained only when students from level j stay in SCH 

Table 1. Basic Structure Matrix of the Markov Chain Model
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level j or move to other SCH levels, or when students 

from other SCH levels move into SCH level j.

Given these relationships, the number of 

undergraduates by level in the second Fall semester 

can be calculated using the following formula:

h(i+1)j = hij –  ij – oij + wij + s(i+1)j

This is the number of total transient students in 

one of the SCH levels after 1 year who were not 

absorbed by withdrawing or graduating. Therefore, 

the total number of students in the (i+1)th Fall 

semester is simply given by

Hi+1 = Hi – Li – Ni+1

since the inflow and outflow terms cancel upon 

summation.

RESULTS
The model used actual data from a Southeastern, 

masters-level (Large Programs) public institution 

for Fall 2010 through Fall 2017. The enrollments for 

these 8 years are displayed in Table 2.

In developing the Markov chain matrix for each year, 

the total number of students within each category 

were noted and tracked to the following year. Within 

this matrix, one can observe the various student 

states by each category to determine who is moving 

into transitional (nonabsorbing) states and who is 

graduating or not returning. These more-granular 

data within the matrix offer clues as to when 

students may be leaving the institution and where 

there are potential bulges in the system coming 

from new or transfer students.

Table 2. Annual Enrollment Data, Fall 2010–Fall 2017

Fall i
Fall i 

Headcount Lost Continuing New
Fall (i+1) 

Headcount

Fall 2010 9,652 3,773 5,879 3,957 9,836

Fall 2011 9,836 4,082 5,754 3,721 9,475

Fall 2012 9,475 3,965 5,510 3,761 9,271

Fall 2013 9,271 3,843 5,428 3,574 9,002

Fall 2014 9,002 3,685 5,317 3,598 8,915

Fall 2015 8,915 3,792 5,123 3,993 9,116

Fall 2016 9,116 3,945 5,171 3,919 9,090

Fall 2017 9,090 not known not known not known not known
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Table 3 represents one such matrix, the 6-SCH 

matrix from Fall 2016 to Fall 2017. The 28 6-SCH 

groupings are labeled down the left with the same 

corresponding 28 groupings across the center of 

the matrix. This table also contains headcount by 

groupings, how many within each grouping did not 

return, how many graduated, and how many new 

students enrolled in Fall 2017 but not Fall 2016. 

Matrices such as this one can be examined to 

identify the aforementioned leaks and bulges in the 

enrollment pipeline.

The following labels are used in Table 3:

1|	 HC1 (Fall 2016): Fall 2016 census undergraduate 

enrollment excluding special groups.

2|	 Lost: Enrolled Fall 2016 but not in Fall 2017. 

This includes students that graduated without 

reenrolling, as a subset. When determining 

if the student returned in Fall 2017, only 

undergraduate students, excluding special 

groups, were considered.

3|	 Continuing: Enrolled in Fall 2016 and Fall 2017.

4|	 GradA16: Awarded an associate degree in 

Fall, Spring, or Summer of Academic Year 

2016–17. Note that only one degree is counted 

per student to avoid double-counting, with 

bachelor’s degrees given precedence over 

associate’s degrees.

5|	 GradA16E: Awarded an associate’s degree and 

enrolled in next Fall term in another degree 

program. These students are a subset of 

GradA16.

6|	 GradB16: Awarded a bachelor’s degree in Fall, 

Spring, or Summer of Academic Year 2016–17.

7|	 GradB16E: Awarded a bachelor’s degree and 

enrolled in next Fall term in another degree 

program. These students are a subset of 

GradB16.

8|	 Columns in the center indicate movement of 

continuing students from the Fall 2016 SCH 

categories to the Fall 2017 SCH categories. Note 

that the central portion of Table 3 does not 

include counts for students who enrolled both 

semesters but remained in the same SCH level; 

these counts are instead separately labeled 

Static.

9|	 Static: Enrolled in Fall 2016 and Fall 2017 and 

stayed in the same SCH level.

10|	Inflow to: Enrolled in Fall 2016 within a different 

SCH level but moved to the current SCH level in 

Fall 2017.

11|	Outflow from: Enrolled in the SCH level during 

Fall 2016 but moved to another SCH level in Fall 

2017.

12|	New: Enrolled in Fall 2017 but did not enroll in 

Fall 2016. (NewUnder30Hrs and Transfer are 

subsets of New.)

13|	NewUnder30Hrs: New students with fewer than 

30 hours.

14|	Transfer: Transfer students.

15|	HC2: Fall 2017 census undergraduate 

enrollment excluding special groups.

According to the table, in Fall 2016 there were 1,589 

students in the (0–6) SCH group. Out of these, 597 

did not return the next Fall semester. A total of 

408 of these students transitioned into the (25–30) 

SCH group, indicating that they were progressing 

normally, while 232 transitioned into groups of 24 

or fewer SCH. With a quick examination of the flow, 

it is easy to see that the majority of students are 

not returning within the SCH groupings that make 

up the freshman and sophomore years as denoted 

in the Lost column. In the (85–90) SCH grouping, 

109 students graduated, and 5 of the students 

who graduated reenrolled in Fall 2017, meaning 
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that 104 of the students who graduated did not 

reenroll. A total of 165 students in the (85–90) SCH 

grouping were lost (did not reenroll); subtracting the 

aforementioned 104 students leaves 61 students 

who neither graduated nor reenrolled.

A total of 914 new transfer students entered for Fall 

2017, indicating a significant number of students 

who took some type of transfer credit. Many of 

these new transfers could constitute dual-enrolled 

students who took both high school and college 

classes. The bulk of the new transfer students, 

however, are entering with more than 54 and fewer 

than 84 SCHs.

In observing the higher groupings, the table 

indicates that 865 students had accumulated more 

than 126 SCH and 448 (52%) graduated. Of the 

students who earned more than 126 SCHs, 608 did 

not reenroll in the institution.

While this table represents only one of the six 

matrices created for this study, the possibilities of 

tracking student flow by groupings, classifications, 

or years are numerous. Moreover, it can be argued 

that the process of tracking student flow through 

transitional states within the Markov process is 

somewhat intuitive and indicative of the strong 

predictive properties of the model.

Table 4 shows the predictions for the next 3 years, 

along with the actual data. The model was built using 

the flow of students over a particular academic 

year. There were six such academic years used for 

Table 4. Actual Enrollment and Predictions, Fall 2012–Fall 2017

Model Fall 12 Fall 13 Fall 14 Fall 15 Fall 16 Fall 17

Reality Actual Headcounts  9,475  9,271 9,002  8,915 9,116 9,090

Model 10_11 6SCH Predicted Headcounts 
% Diff. from Actual

9,948 
4.99%

9,999 
7.85%

10,002 
11.11%

Model 11_12 6SCH Predicted Headcounts 
% Diff. from Actual

9,244 
–0.29%

9,076 
0.82%

8,958 
0.48%

Model 12_13 6SCH Predicted Headcounts 
% Diff. from Actual

9,105 
1.14%

8,980 
0.73%

8,903 
–2.34%

Model 13_14 6SCH Predicted Headcounts 
% Diff. from Actual

8,839 
–0.85%

8,745 
–4.07%

8,694 
–4.36%

Model 14_15 6SCH Predicted Headcounts 
% Diff. from Actual

8,874 
–2.65%

8,865 
–2.48%

Model 15_16 6SCH Predicted Headcounts 
% Diff. from Actual

9,258 
1.85%

Note: The model creates predictions for the next 3 years (when actual data are available for comparison) for each of the models 

using the 6-SCH methods.
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construction of the models. The columns of Table 4 

show the years for which an enrollment prediction 

was generated. As can be seen in the table, 

predictions for the 10_11 Model for both methods 

were overspecified by about 5% for Fall 2012 

and about 11% for Fall 2014. The 11_12 Models 

produced better projections, coming within less than 

1% of the actual values for all 3 years. The prediction 

of the 12_13 Model differed from the actual 

enrollment by an average of –0.2%. Results from the 

13_14 Model indicate that the prediction differed 

by an average of 3.1%. In most cases, predictions 

farther into the future from the years used to train 

the models have greater residuals, which is to be 

expected in any forecasting problem.

We calculated averages of the absolute values of 

the percentage differences between the actual and 

predicted values for enrollment using the actual and 

predicted enrollment from Table 4. The percentage 

difference between the predicted and actual value is 

defined as

% difference = 
predicted value - actual value

actual value
x 100%

We can examine the predictive ability of the models 

by using the average value of the absolute values 

of these percentage differences, because these 

values show on average how far off the models 

were, regardless of sign. In a mathematical sense, 

the absolute value between two numbers is known 

as the standard Euclidean distance between two 

points and indicates the real distance between two 

numbers (Bartle & Sherbert, 2011). The results as 

shown in Table 5 clearly indicate that the predictive 

ability of the model decreases as number of 

years out from the years used to build the model 

increases, which is expected, similar to how weather 

forecasts become less accurate the farther they go 

into the future.

Based on the results from Table 5, the study will 

examine only 1-year-out predictions, because these 

were the most accurate. The actual values are 

compared with those 1-year-out predictions in Table 

6. The predicted enrollment for Fall X in Table 6 is 

produced from the enrollment data from Fall X-2 

and Fall X-1 and subsequent flow rates from Fall X-2 

to Fall X-1.

Note that the 6-year average of the absolute 

values of the percentage differences by class range 

from 2.8% to 4.7%. The 2016 freshman percent 

difference of –12.9% represents an outlier due 

to a major university initiative to increase new 

freshmen enrollment. This influx of new freshmen 

was significantly different from past years and clearly 

signals the bulge in the student flow pipeline as 

mentioned above. By utilizing the iterative process 

of producing Fall X projections from the enrollment 

data from Fall X-2 and subsequent flow rates 

from Fall X-2 to Fall X-1, the effect of this bulge in 

the system can be tracked into the future to plan 

upcoming course offerings.

Table 5. Mean Absolute Value of Percent 
Differences by Years Out for 6-SCH Models

Prediction 
Time Frame

Mean Absolute Value of 
Percent Difference

1 year out 1.96%

2 years out 3.19%

3 years out 4.57%
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By observing the predictive capabilities of the model, 

it is easy to see how administrators and enrollment 

managers can use these results to plan for classes 

and instructional personnel. Here, both annual 

projections and classification average projections for 

the 5-year period were off by no more than 6.6%, 

which should fall within the margin of error for most 

larger institutions.

Furthermore, Monte Carlo simulation could be 

used to obtain enrollment predictions that give a 

range of plausible values instead of a single point 

estimate for a future year’s enrollment. Monte Carlo 

simulations have been used in the context of higher 

education by Torres, Crichigno, and Sanchez (2018) 

to examine degree plans for potential bottlenecks. 

In applying these methods to this enrollment model, 

the fractions of students transitioning between 

specific levels would be treated more like the result 

of many coin flips than as fixed fractional values, and 

the ranges of predicted values could be obtained by 

repeated random simulation. This level of simulation 

was not performed in this study.

Table 6. The 6-SCH Models’ 1-Year-Out Predictions Compared to Actual Enrollment, 2012–17

Freshman Sophomore Juniors Seniors All Levels

Mean Absolute 
% Difference of 

Class Levels 

2012 Actual 
Predicted 
% Difference

2,876 
3,114 
8.28%

2,035 
2,090 
 2.68%

1,871 
1,966   
5.10%

2,693 
2,778 
3.17%

9,475  
9,948 
5.00% 4.81%

2013 Actual 
Predicted 
% Difference

2,729  
2,817 
3.23%

1,890 
1,875  

–0.79%

1,870 
1,834 

–1.92%

2,782 
2,718 

–2.30%

9,271  
9,244 

–0.29% 2.06%

2014 Actual 
Predicted 
% Difference

2,644 
2,709   
2.47%

1,803 
1,800  

–0.16%

1,870 
1,789 

–4.36%

2,685 
2,807 
4.53%

9,002  
9,105 
1.14%

	

2.88%

2015 Actual 
Predicted 
% Difference

2,533 
2,574 
1.60%

1,944 
1,809  

–6.93%

1,738 
1,816 
4.51%

2,700 
2,640 

–2.24%

8,915  
8,839 

–0.85% 3.82%

2016 Actual 
Predicted 
% Difference

2,921 
2,543 

–12.93%

1,724 
1,885 
9.36%

1,855 
1,801 

–2.89%

2,616 
2,644 
1.07%

9,116 
8,874 

–2.65% 6.56%

2017 Actual 
Predicted 
% Difference

3,048 
3,053 
0.17%

1,829 
1,788 

–2.24%

1,652 
1,766 
6.91%

2,561 
2,651 
3.51%

9,090 
9,258 
1.85% 3.21%

Mean Absolute 
% Difference

4.78% 3.69% 4.28% 2.80% 1.96%
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CONCLUSIONS
The use of Markov chains in projecting enrollment 

and the management thereof has gained popularity 

among professionals in higher education. The 

short-term projections created by this stochastic 

process are unique to other time-tested forecasting 

tools used in enrollment management. When 

used properly, Markov chains can aid institutions 

in determining progression of students that 

are different from more-traditional ARIMA and 

regression prediction tools in that:

1|	 they can give accurate enrollment predictions 

with only 2 previous years’ data, which can be 

helpful when large longitudinal databases are 

not available;

2|	 they can be used to generate predictions on 

segments of a group of students rather than the 

entire population, which may be required for 

other models; and

3|	 the almost intuitive nature of the Markov 

chain lends well to changes in student flow 

characteristics, which often cannot be explained 

by a complex statistical formula.

By creating groupings and tracking students within 

those groupings by the state they transition into, the 

researcher can also get a better picture of what type 

of students are leaving and when they are leaving.

As shown in this study, the strong predictability 

of Markov chains allows administrators to better 

plan course scheduling and instructor demand 

while managing tight budgets. In this study, several 

predictive headcount models were developed using 

SCH flow as the annual driver. Eight years of Fall 

enrollment data from the institution were used to 

develop the models. When applied to historical 

data each gives 1-year-out predictions within a 

calculated level of uncertainty. The models can easily 

be modified to change the new student input data, 

the continuation rates, and the interlevel flow rates, 

should that be desired. Furthermore, similar models 

could be used to track Fall to Spring retention as well 

as Spring to Fall retention.
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