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THE USE OF COMPUTATIONAL DIAGRAMS AND NOMOGRAMS

IN HIGHER EDUCATION

Institutional researchers are well aware of the effec-
tiveness of graphical displays and, where circumstances
allow, often use them in place of tabular data displays.
There are many such instances where the graphical dis-
play is an efficient and preferable means of communi-
cation. However, the same characteristics that make
the graph a superior presentation device also ensure its
usefulness and acceptability as a computational tool.
Field engineers and scientists in many disciplines use
graphs to make quick, repetitive, and accurate calcula-
tions, a usage which has not been replaced by the hand
calculator or microcomputer.

Computational Diagrams

The three-dimensional diagram. The common prac-
tice of relating variables to geometrical dimensions is
probably the reason that graphs are not used more
often for computation in higher education. Once four
or more variables must be linked, our limited ability to
deal with a world beyond the three dimensional brings
graphing to an end. This may be illustrated by a simple
example.

Suppose we consider an institution’s tuition rate to
be a decision variable (i.e., not fixed) and consider tui-
tion revenue to be a function of rwo independent
variables——enrollment and tuition rate. The standard
graphical representation is three dimensional (Figure
1), a structure which taxes both the person constructing
the graph and the user.

As illustrated, we enter the graph with an enrollment
of 20,000 and a tuition rate of $1,500 and find the
intersection on the tuition-enrollment plane. Moving
vertically from this point to the intersection within the
tuition-enrollment-revenue surface and from there
horizontally to the revenue axis, we arrive at a revenue
of $30M. Using the three-dimensional graph in this
manner is more difficult than using the more common
two-dimensional graph, but because of the linear rela-
tionships, an “answer” may be found via parallel lines.
Once the relationship becomes non-linear, the surface
develops a curvature and finding a reliable intersection
is no longer feasible.
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Figure 1. A three-dimensional graph.

This method, already cumbersome at three variables,
becomes impossible if we must consider tuition revenue
to be a function of three independent variables, at
which time a four-dimensional graph would be re-
quired.

The four-dimensional computational diagram. All
the preceding difficulties disappear once we abandon
the traditional format of graphing variables along
orthogonal axii. Figure 2 is such a graph, one which we
choose to call a “computational diagram,” This dia-
gram relates four variables: workload in contact
hours/ FTE (on the left-hand vertical axis), workload in
student credit hours/ FTE (on the curved axis), the
number of students admitted each year (on the hori-
zontal axis), and the number of faculty FTE (on the
flared diagonal axis).
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Figure 2. Four-variable computational diagram for analyzing a technicalf professional program.,

Figure 2 may be used in a number of ways. For
instance, if we wish o maintain a 12-contact-hour/
FTE/term workload and have 10 faculty FTT, we draw
a horizontal line at the 12/ CH/FTE/term level until it
intersects the 10 FTE diagonal. From this intersection,
we drop a vertical line to the horizontal-seale intersec-
tion and find that about 264 juniors may be admitted
each year, We also learn that the workload level under
these conditions will be approximately 400 SCH/FTE
(because the intersection lies near the 400 SCH/FTE
scale curve).

This diagram may also be used to answer the ques-
tion, How many faculty do we nced if we want to
admit 375 new juniors per year and maintain a 14~
contact-hour/ FTE workload? When we draw a hori-
zontal line at 14 CH/FTE/term and a vertical line at
375 new juniors, the intersection lies slightly more than
half way between the 10- and 12-FTE, diagonal-scale
lines, indicating that about 11 FTE will be needed to
maintain the required student population and work-
load, We also find that this situation will require a
faculty workload of about 490 SCH/ FTE.

Figure 2 was developed from a model based on a
detailed analysis of a department’s teaching model,
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laboratory limitations, course structure, and staff con-
{iguration, the details of which are given in the next
section, ‘

A workload model. As undergraduate program pref-
erences change, it is often necessary to consider cn.ml‘l-
ment limitations for programs and departments wlthm
the university. This is especially true in times of eco-
nomic troubles and budget reductions, In order to
accomplish a realistic yet understandable analysis of
departmental workloads, student numbers, and ‘mculty
strength, @ mathematical model relating these factors,
and others, was developed by the authors, '

The basie unit of this departmental model is the
course. The workload contribution and student enroli-
ment are maodeled for eanch course (‘)!'f’c}'cci t')y the
department over a selected time interval, in this case
the three-term academic year. Several examples will
iustrate this: )

Example 1. EPD 200 is a {our-credit course offered
each term. The lecture component of this course meets
for three one-hour sessions a week in sections of Xz00;
the laboratory component meets once a week for three
hours in sections of Xawn., Usually, half ol the juniors
and seniors in the academic program are enrolled in



EPD 200 during any given year. CH and SCH are
given by

CHago 2(__..____.N‘+N2) ° (__3.__ + ___3__)
2 XKoo Xa00L

SCHae = (4 Ny + NZ)
2
where N; = number of seniors in the department’s pro-
gram and may be related to number of juniors by

Nz = (1 - ) Ny(t-1)

where Nj(t-1) is the number of juniors admitted the
previous year and « is a drop-out fraction. (Xzo0 may
equal 60, and Xaoor. may equal 20 students.)

In Example 1, we have examined a course which is
considered to be in the “core” of the academic program
and is open only to students admitted to the program.

Example 2. EPD 100 is a “service course” open to all
university students. It is a three-credit course taught in
three one-hour lectures each week, one large lecture
section each term. The CH and SCH may be given by

CHip = 9
SCHyw = 541+ 9.47N,

This SCH equation was developed using historical data
of service SCH vs. number of juniors in the program.
A least-squares regression was used to fit a straight line
to the (SCH, N)) points, thereby relating the service
SCH to historical student demand for the program.

All courses in this particular department’s program—
core, service, clective, and graduate—were modeled
using the methods and combinations of methods out-
lined in the previous examples. Total contact hours and
total SCH were then found by summing over all
courses:

CHyoo = CHio*
SCI‘IT:)I

CHapo + . . .
SCHyw + SCHago + . . .

Now that the two workload variables may be viewed
as functions- of admitted juniors, section sizes, and
other teaching-model parameters, the workloads may
be related to the FTE count of the faculty (Q). (All
course and staffing information is normalized for a
three-term academic year.) These are the relationships
shown in Figure 2.

Constructing a four-dimensional computational dia-
gram. The following is a step-by-step description of the
procedure used to generate the diagram shown in Fig-
ure 2. This process may be generalized for any similar
four-dimensional relationship among variables.

1. Determine all model assumptions exactly. Set all
model parameters (section sizes, for example) at
constant values except for the four parameters of
interest: CH/FTE, SCH/FTE, Ny, and Q (Ni =
number of juniors admitted, Q = faculty FTE).

2. Determine which two variables are to be used for
the orthogonal axii. For our example, CH/FTE was
placed on the vertical axis with a range of 0 to 20,
and N; was placed on the horizontal axis with a
range of 100 to 500 (N1 min to N, max).

3. Determine the range of values to be shown on the Q
scale; Qmin to Qmax (6 to 20 on Figure 2).

4. Set Q = Qmin and incrementing N; between Nimin
and Nymax; calculate values for CH/FTE from the
model’s equations. This produces a series of
(CH/ FTE,N)) points. Connect these points to pro-
duce the Qmin scale line.

5. Increment Q by a convenient value, Qinc (Qinc = 2
in Figure 2) and repeat Step 4. Continue this process
through Q = Qmax. This produces the Q scale.

6. Determine the minimum and maximum values to be
used for the SCH/FTE scale (SCH/FTEmin,
SCH/FTEmax) and an appropriate increment
between scale lines, SCH/FTEinc. (SCH/FTEinc =
50 and 100 in Figure 2.)

7. Set SCH/FTE = SCH/FTEmin and Q = Qmin.
Rearranging the model’s equations, compute N,
(SCH/FTEmin, Qmin); this is the point (N1, Qmin),
the intersection of the N, scale line with the Qmin
scale line. Increment Q and recompute the point
(N;, Qmin + Qinc). Continue this process until Ny =
Ni;max. Connect the N;,Q) points found in this step
to obtain the SCH/FTEmin scale line.

8. Increment SCH/FTE (SCH/FTEmin + SCH/
FTEinc), repeat the process in Step 7, and draw the
second SCH/FTE scale line. Repeat this process
until the SCH/ FTE scale is complete.

Figures 3 and 4 are additional computational dia-
grams based on a different modeling procedure and dif-
ferent teaching models. These diagrams were used suc-
cessfully in a planning negotiation between the provost
and the involved dean and chairpersons; the proce-
dures, models, and assumptions were agreed to by all
parties involved in negotiating a solution. Figure 2 is a
model of what could be referred to as a technical/
professional curriculum; Figure 3 was developed for a
classical engineering program with almost no service
component. Figure 4 is for a quantitative, engineering-
related discipline with no engineering laboratories but
with a very large service component. These diagrams
may be used exactly as was Figure 2. Clearly, the
underlying model may have to be quite complex in
order to represent all the relevant variables; however,
the resulting computational diagram is generally very
simple in structure, and workload measures and enroll-
ments may be quickly traded off against one another to
reach a solution that is acceptable to all participants in
a planning session,

The value of such diagrams becomes apparent in
those situations where we must make a series of repeti-
tive calculations, when an equation must be solved for
different variables, or a complex computer simulation
must be rerun. Such a situation may be exemplified by
a planning session where the participants have only a
vague idea of what should be done and prefer to arrive
at an understanding by asking a series of “what if”
questions. In the previous examples, planners could
readily calculate their own answers to questions like
these: If our eight faculty were to teach sixteen hours a
week, how many juniors could we accept into the pro-
gram? or, If we want to hold the teaching load to
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Figure 3. Computational diagram for an engineering
program with no service component,

twelve hours a week, how many faculty will we need to
handle our 120 juniors? The fact that a computational
diagram can easily be used by a/l the participants to
obtain nearly immediate answers to their questions is
clearly preferable to the more common situation where
technical questions are referred to a specialist who
responds days later. In this milieu, the computational
graph serves the same purpose as a simple computer
model that can be used interactively by all participants
on their own terminals.

It seems clear that diagrams of this nature are not
limited by the complexity of the calculations as much
as by the number of variables. Four or {ive variables
can be accommodated within a readable format.
Beyond that, the researcher must depend upon his or
her ingenuity to make it understandable. Typically,
however, administrators and planners establish refer-
ence points by examining the effects of a few com-
monly used and accepted variables, a situation easily
handled by our computational diagrams.

Nomographs

In the foregoing, we have shown that relatively sim-
ple calculations such as frequently occur in higher edu-
cation administration can casily be performed using
specially constructed graphs. We now illustrate yet
another method to perform calculations, the nomo-
graph, which has characteristics that make it more use-
ful, in certain instances, than a computational diagram.,

At first glance, the nomograph may appear to be
indistinguishable from the computational diagrams
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Figure 4. Computational diagram for an enginecring
discipline with no laboratories.

already discussed, but the underlying principles are
quite different. In essence, a nomograph involves a set
of numerical scales calibrated along straight lines which
are, in most cases, parallel. Unknown values are found
by using a straightedge to line up several given values
and reading the unknown value located at the intersec-
tion of the straightedge and the scale of the unknown
variable, Thus, in the nomograph in Figure 5, a given
value of A=5 and B=10 would result in C taking on the
value 400, where the dotted line represents a straight-
edge used to align points that are all related by a func-
tion linking A, B, and C.

Nearly any calculation that can be represented by a
computational diagram can also be represented by a
nomograph, or conversely. In general, nomographs
work best when the number of variables is less than six
and the mathematical relationships are relatively sim-
ple, (i.e., involving arithmetic operations). Since the
nomograph uses only the interscction of a line with
other calibrated lines, the graph is free of the confusing
clutter of curves and the horizontal and vertical grid
lines associated with graph paper.

In addition, the nomograph technique enables one to
obtain accurate results casily, without the need to make
rough interpolations between curves, as is often the
case with the use of computational diagrams. A final
advantage of the nomograph is that a step-by-step con-
struction procedure can be formulated. The computa-
tional diagram has greater versatility (i.c., it can handle
more complex relationships involving many variables),
but it is more difficult both to use and to construct.
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Figure 5. Using a simple nomograph.

As an illustration of the advantages of the nomo-
graph, consider Figures 6a and 6b, which represent the
instructional model of a chemical engineering depart-
ment which has 110 entering juniors and a faculty of
9.5 FTE. In Figure 6a, the darker lines indicate that the
ensuing workloads would be 250 SCH/FTE and 12.5
Contact Hrs/ FTE, The same solutions can be gained
from the nomograph in Figure 6b. The 9.5 FTE on the
far left axis and the 110 juniors on the right axis are
connected by a straight line that cuts the transversal
axii at 12.5 and 250. A comparison of the two graphs
will disclose some of the pros and cons,

Note how quickly this procedure, using either graph,
can be carricd out with a few practice trials; in fact, one
could perform these mechanical movements more
quickly than he/she could keypunch the input values of
N and Q into a preprogrammed minicomputer or hand
calculator. Certainly, using the nomograph is far laster
than solving the original equations with a calculator.
Finally, it should be clear that we do not always have
to use N and Q to find SCH/FTE and CH/FTE. Given
any pair of the four variables (except SCH/FTE and
CH/FTE), we can find the remaining two by construct-
ing the tie line using the two given values.

Constructing nomographs. Nomographs were in-
vented in 1899 by a French mathematician, Maurice
D'Ocagne, and quickly became a standard technique in
the scientific and engineering fields. Most of the more
useful nomographs were soon constructed, and the
practice of nomography dropped from usage as quickly
as it had begun, disappearing from the engineering cur-
riculum by 1930. As a result, the more useful textbooks
on this technique are well over fifty years old,

Most textbooks on nomography proceed by develop-
ing nomographs for certain fundamental equations.
Once these standard forms are mastered, the technigue
is quickly generalized to more complex equations by
viewing these equations simply as combinations of the
fundamental forms. A quick summary of this approach
is useful for gaining a general understanding of nomo-
graph construction.
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Figure 6a. Representation of the instructional model
of a chemical engineering department, using
a computational diagram.
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Figure 6b. Representation of the instructional model
of a chemical engineering department, using
a nomograph.

The first standard form is the equation fi(p) + f(q) =
fy(r) where fi, f2, and fa are functions of p, q, and r
respectively. An example would be this:

(p-1)* + q* = (3r+2)

fi(p)  falq) £3()
The characteristic nomograph associated with this
equation is shown in Figure 7. The problem of con-
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struction becomes one of properly calibrating the p, r,
q scales and determining the distance between them.

The second standard form is fi(p) » f2(q) = f3(r) and
has the characteristic form, as shown in Figure 8.

These two standard forms would suffice for a good
many equations applicable to higher education. When
used in combination, the possibilities are greatly
extended, as will be demonstrated in the concluding
example.

0" *
~¢9

Figure 7. Nomograph for the basic equation,
fi(p)+fa(q) = fa(r).

fy (p*) - fy(g*) =13 (™)

Figure 8. Nomograph for the basic form,
fi(p) » f(q) = fz(x).

Example. Suppose we wish to construct a nomo-
graph enabling us to find trade-offs between tuition
increases and salary increases that will result in a bal-
anced budget for a small state-supported college.
Assume we are told that the current enrollment (E) is
10,000, the salary budget is $60 million, the tuition
averages $2,000/ year, additional revenues total $20 mil-
lion, and additional expenditures total to $10 million.
The current state appropriation is $30 million.

Assume that enrollments, appropriations, tuition,
and salary are all variables that can be changed.

Let:  E = most current enrollment
A =% change in the state appropriation
T = % change in the tuition
S = % change in the salary budget

If the model is to reflect a balanced budget, we set:

revenue = expenditures

(tuition revenue + appropriation + other
revenues) =

(salary budget + other expenditures)
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~~s L | e =t

E x $2,000(1+T) + $30M(1+A) + $20M =
$60M(1+S) + $10M

Simplifying, we get:
(2E) . (1+T) + [10,000(3A-2)] = 60,0008

fi(E) « [(T) fxA) fu(S)

Thus, we want to construct a four-variable nomograph
for the equation of type:

fi(E)» £(T) + £5(A) = £u(S) (h
We handle this by writing it as two easy problems:
Let: Q=f(E)e f(T) (2)

Then, Equation 1 gives: Q + fi(A) = f«(S) (3)

A nomograph can be constructed for each of these
two equations, as in Figure 9. The {inal nomograph is
formed by merging the two nomographs in Figure 9 by
using a single Q axis (Figure 10). (Certainly the problem
of plotting the precise position of the five scales and of
calibrating them remains. These details are not difficult
to solve, but they cannot be explained in a paper of this
length, The point the authors wish to make with the
example is that useful nomographs can be constructed
using minimal theory.) The completed nomograph
appears as Figure 11,

We expected the T scale to be a transversal line from
the E to the Q scale, and yet it appears to be vertical.
This is only because the E scale does not start at 0 but at

A S

1 (E) - f,(M=Q Q+f,y(A)=1,(S)

Figure 9. Nomograph format for equations (2) and (3).

Figure 10. Nomograph format for
fi(EY« £5(T) + f35(A) = £4(5).
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Figure 1. Nomograph of a state-supported college budget.

9,000; the slight incline of the T seale would cause it to
cross the E scale at the 0 point, if extended.

A typical solution may proceed as follows: We are
given that the expected appropriations will increase by
5% and that the enrollments will rise to 10,500, If we
wish to increase salarics by 69, what accompanying
increase in tuition is required? The solution indicated by
the dotted tic lines on Figure 6 is approximately 3%.
(Numerical calculations produce a figure of 5.2%.)
Repeated trials can be performed to give immediate
answers to similar “what if* questions and to arrive at a
consensus as to the proper course of action, Precise
numerical calculations can then be made to refine the
selected percentages.

Summary

The authors have attempted to show that sophisticated
calculators and microcomputers have not yet relegated
all older computational techniques and devices 1o the
dust bin, There are still certain situations in which older
methods hold an advantage in both speed and conven-
ience. The slowest step in any caleulation for which a
caleulator or computer is used is the human hand that
keys in the data. As we have demonstrated, once a calcu-
lation involving several variables has been represented by
a computational diagram or a nomograph, the user often
can obtain solutions more quickly than is possible by

computer. The first task is the identification of those
special situations that warrant the use of diagrams and
nomographs. In higher education administration there
are at least two. One such instance occurs wherever a
routine calculation must be performed repeatedly, using
different input values, The other situation is more diffi-
cult to recognize; it will most likely develop within a
planning milieu, where a relatively simple analytical
model is needed to calculate responses to “what if” ques-
tions posed in the form of values assigned to input vari-
ables. A fast response is essential. In this situation, a
computational diagram or nomograph reveals its full
potential, These efficient devices not only equal the per-
formance of a microcomputer; they are also more con-
venient to carry and, most importantly, they can be
used by all participants in the planning session, More
than one user has expressed delight with the simplicity
and cleverness of these tools, an initial reaction that
swiftly leads to a general acceptance of results. Expe-
rienced modelers will appreciate the psychological
advantages that accrue when a planner can use a
model, in the form of a nomograph or computational
graph, to answer his or her own questions—a situation
that is difficult to achieve if computer models or com-
plex equations are used.

Once an alert administrator or researcher has dis-
cerned a situation conducive to the use of a nomograph
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or computational diagram, the task of its construction
remains. The construction is not difficult and can read-
ily be mastered with the aid of one of the suggested
texts.
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