


AIR Professional File, Number 33, Data integrity: Why Aren’t the Data Accurate?

corrupt or compromise data bases. For example, at-
tempts to illegally change student grades or remove
parking violations are not addressed. Additionally, the
activities of “hackers” and computer “viruses" are be-
yond the scope of this paper.

An operational data base, used for administrative
applications at a college or university, is presumed.
Beyond possible external attempts to corrupt or compro-
mise a data base, and in addition to technical DBMS
maintenance problems, users of administrative data
continue to be confounded by corrupted data. This
paper addresses some sources of data corruption and
what might be done to deal with them.

Data Corruption Sources, Identification, and Actions to
Resolve

Sources of data corruption include changes in insti-
tutionai policies, new meaning associated with a datum,
user experimentation with the system, purging/consoli-
dation of corrupted data, referential integrity, inadequate
analysis and testing of software, running obsolete
versions of a program, restructuring set relationships on
a data base, and the trade-off between editing and
performance. Each of these is described, including the
ease or difficulty of identification, and suggested ac-
tion(s) for prevention are given. Table 1 (page 5)
summarizes the sources of data corruption, their identi-
fication, and suggested actions to address them.

Changes in Institutional Policies

One of the most subtle ways that data integrity is
compromised occurs when institutional policies change
but the computer code which accommodates those
policies does not. Even the slightest change in policy
logic or in the values associated with a datum, if not
similarly reflected in the corresponding computer code,
will result in corrupted data. For example, if a fee or
tuition policy is changed but the respective computer
code Is not, data integrity is compromised. A policy
changed in a process, such as registration activities, if
not correspondingly reflected in computer code, may
throw a number of data relationships out of synchroni-
zation and produce corrupted data.

An easily identified case of this phenomenon occurs
when an institution acquires an application system from
an external source, either from another institution or
from a commercial vendor. With such an acquisition,
service requests from users accumulate quickly because
the system does not process properly from the users’
points of view. In fact, the application code presents
policies different from those in place at the institution.
When computer code is changed to accommodate a
different process, institutional policy is being rewritten,
Clearly, much institutional policy is actually written by
programmers and employees in the user offices.

identlfication. Generally the impact of this kind of
corruption is easy to spot when affected data are
accessed, either through operational reporting or regu-
lar operational processing. Affected users are usually
the first to notice these problems.

Suggested Action. Precluding these problems in a
proactive way requires the use of standard information-
processing techniques that have been around for a long
time: thorough systems analysis and design, and equally
thorough testing prior to implementation, Open commu-
nication among affected users is necessary throughout
the process.

New Meaning Assoclated with a Datum

Many Institutions have well-meaning users, adroit at
improvisation. This phenomenon results from a user
doing the wrong thing for the right reason, and it may
go unnoticed indefinitely. Typically, a user with a press-
ing need knows that submitting a service request for the
change will result in a long delay. The user needs the
change immediately. The result is an ad hoc, localized,
improvisation that is usually communicated reluctantly
and after the fact, when some other office encounters
corrupted data. Two types of improvisation may occur,

Type One. The first type might occur with the case of
a table of U.S. institutions indexed by unique institu-
tional codes, The data-base system might provide a
unique record occurrence for each U.S. institution from
which a student submitted transfer work. A separate
record occurrence might be provided for the free form
entry of information on institutions outside of the U.S.
and not found in the table. In the case where a U.S.
institution might not be found in the institutional table,
an enterprising user might quickly opt to use the free
form capability by creating U.S. entry on a record for
institutions outside of the U.S. The result is a com-
mingling of U.S. institutions on two different record
types for a student: one for U.S. institutions and one for
institutions outside of the U.S.

Identification. This kind of corruption is usually easy
to spot, when the data are accessed. However, some
office other than the one that corrupted the data will
report the problem (often an institutional research
office).

Suggested Action. Steps to be taken proactively to
preclude this kind of problem are these: First and most
critically, open communication, combined with internal
education and commitment to data Integrity, must be in
place. Secondly, data administration and other offices
concerned with data Integrity must have scanning
software In place to monitor key data elements and their
maintenance.

Type Two. The second type of improvisation occurs
when a particular code, meaning one thing, is appro-
priated to take on a new, additional meaning. For
example, a code might be used to deny enroliment or
some other activity as a result of expiration of a
deadline, e.g., no previous enrollment for some number
of preceding semesters. When the system encounters
this code in a student’s attempt to register, the regis-
tration will be blocked until the student reapplies or
eliminates the reason for the block. Using an established
code to block enrollment for a different reason, such as
another kind of hold, will corrupt the data, Only the
initiating user knows, .

Identification. This kind of data corruption is hard to
spot and usually will not be reported by the office
responsible for it. More likely, the problem will come to
light in incidental conversation, long after many data
have been corrupted.,

Suggested Action. Data integrity scans are of little
direct use. After the fact and indirectly, they may be of
use by analyzing relationships between fields. Open
communication combined with education and commit-
ment to data integrity must be in place in order to
address this problem.

User Experimentation with the System

This source of corruption also comes in two forms:
entry of undefined data and of fictitious data for testing.

{




)

AIR Professional Flle, Number 33, Data Integrity: Why Aren’t the Data Accurate?

In the first form, a user may try to get the system to take
a datum that has not been legitimately defined to it. This
is a form of experimentation that results when it is
presumed that service requests will be met with fong
delays. The vehicle for this action is poor editing
capability in the application software. This kind of
corruption may go unnoticed for a while, but usually not
for long. Data, clearly out of line, show up readily on
reports or screens. Often, the corrupted data may cause
abnormal termination of computer jobs. The result is
both good and bad. It is good because the corrupted
data are identified. It is bad because of delays required
to correct the data.

Identification. This form of corruption is usually easy
to spot, but it must be spotted by offices other than the
one reponsible for it.

Suggested Action. Internal education regarding data
integrity concepts and open communication can pre-
clude or minimize the problem, Data integrity scans
may serve as an early warning system.

In the second version of this phenomenon (entry of
fictitious data), a user may enter data that look normal
but are fictitious. This is a form of trickery, frequently
resuiting from the need to do real testing on the system.
The best testing is often presumed to take place in the
“production environment.” Maintaining a legitimate “test
environment” can be difficult and time consuming. The
consequence of testing in a production environment,
however, can be disastrous. While attempts to “flag”
fictitious data are reasonable in order that the data will
not be reported, all software programs that access the
dlata must be modified or “hooked” to check for the
flags.

This process, itself, consumes additional resources,
presumes excellent documentation and communication,
and unnecessarily complicates code. Additional bugs
may be incorporated in the application code. Invariably,
some software will not be modified. Subsequently, also,
the expected removal of fictitious data may not be
complete. The result is corrupted data that remain on
the data base and unnecessarily complicated application
code, Future processing that accesses these data may
further compound the matter.

Identiflcation. This form of corruption may be easy to
spot or hard to spot. Again, the office responsible for it
will usually not report it as corrupted data,

Suggested Actlon. A broad-based institutional com-
mitment to data integrity is a “must” before this problem
can be successfully addressed. A true commitment to
testing in a test environment Is necessary. Resources
must be committed to establishing and maintaining a
reasonable test environment. Data integrity scans may
be of help In order to identify corrupted data elements,
but usually such scans will need to analyze relationships
between fields, rather than analyze a corrupted field
directly.

Purging/Consolidation of Corrupted Data

Purging and/or consolidation of data are processes
frequently used in a computing environment to meet
many reasonable needs: restoration of much needed
disk space, improved efficiencies in processing, simplifica-
tion of the data base, etc. These processes may also
represent means for dealing with unwanted or corrupted
data.

Purging takes place when data are removed from the
system; usually this means from on-line and real-time

access. A commonly accepted procedure is to perform
some kind of backup of the system or data prior to the
purge. Thus, there should be an historical copy of the
data from which a future restoration could take place.
The expectation, however, is that the need for restora-
tion is remote.

The problem with purging, however, is that invariably
the purged data will need to be accessed in the future.
The problem of corrupted data is not solved, only
delayed. With the passage of time, and usually poor
documentation, corrupted data are more difficult to
understand and explain. As always, time is of the
essence, and what was previously out of sight and out
of mind may now come back with a vengeance to haunt
the researcher. The process of purging, too, can post its
own problems and will be discussed later in this paper.

Consolidation of data takes place when data are
regrouped in different formats (different records or
different tables) and possibly relocated elsewhere on
the data base. The purpose is to recapture available disk
space and improve computer resource utilization when
the consolidation data or other data are accessed.

As with purging, the problems of corrupted data are
not addressed. A compounding factor in this process is
that the consolidation logic itself may introduce further
data corruption problems. Relationships between data
elements may be confounded, and the actual movement
of data may not be totally accurate. Thus, while the
original problems of data integrity are not addressed,
they may be worsened in this process.

The computer department and many users may work
in concert to support purging as a means of dealing
with data integrity problems. The problem with this
approach, however, is that integrity problems remain;
they are only hidden.

Identification. These purging and consolidation prob-
lems will be easy to spot when the data are restored and
accessed: however, the compounding factors of time
and poor documentation may make understanding of
the restored data additionally difficult.

Suggested Actlon. Data elements (names, formats,
and contents) must be documented, even with corrupted
data. Data must have as high a level of integrity as is
economically, operationally, and technically feaslble.
Purging, which serves many useful purposes, must not
be used as a tool to address data corruption problems.

Referential Integrity

Referential integrity Is a concept which has received
increased notoriety with the advent of the mainframe
relational data-base management system, DB2. Univer-
sities and colleges are faced with problems like the
following: Unique combinations of curriculum codes,
department codes, and student majors are established.
That is, for a given student major, only certain depart-
ment codes and curriculum codes are applicable for
enrollment, and vice versa, Also, some of these combi-
nations may be applicable only for certain periods of
time as new combinations are approved and old ones
are discontinued.

The following situation is not uncommon. An internal
table of allowable curriculum, department, and major
combinations exists. Individual students have unique,
respective codes associated with their data. At some
point, a change is made to the internal table, possibly a
deletion or redefinition of what had been an allowable
combination. Affected students’ data, however, are not




AIR Professional File, Number 33, Data Integrity: Why Aren't the Data Accurate? 4

correspondingly changed. The next time the record of
any of these students is accessed and the data checked
against the table, such as at registration, the student is
identified as having an invalid curriculum, department,
and major combination. Frustration and delay for both
the student and the employee often result, Data cor-
rupted in this fashion represent time bombs waiting to
detonate.

Some DBMS like DB2 claim to be able to handle
referential integrity within the data base itself (Date &
White, 1988). That is, the programmer does not have to
program referential integrity constraints into the appli-
cation code, If referential integrity constraints have been
properly described to the DBMS, an update to the table
would cause corresponding modifications to affected
student data, or other options would be presented to the
person trying to do the update. Date and White (pp. 133
& 441) describe this situation as maintaining consistency
within foreign keys on the data base. ‘

Identification. This kind of problem may be hard to
spot until it makes itself known. Data integrity scans of
critical elements may identify some of these problems
before they create reai havoc on the system,

Suggested Action. Referential integrity constraints
must be incorporated in the system, either in the
application code or, preferably, in the DBMS itself.

Inadequate Analysis and Testing of Software Mainte-
nance and Enhancement

This is the age-old problem (Brooks, 1982) of in-
adequate systems analysis before enhancements ot
modifications are made to the system. The problem is
compounded by equally inadequate testing and de-
bugging prior to implementation in production. Limited
or poor communication with affected users during
analysis as well as during testing only worsens the
problem.

This problem is apparent by the large queue of
pending service requests at most institutions. Most
people associated with administrative computing have
become anesthetized to this phenomenon, Martin and
McClure (1983), however, offer a striking word of warn-
ing. They claim that “Maintenance dominates the soft-
ware life cycle in terms of effort and cost” (pg. 7).
Further, “A fundamental problem with software mainte-
nance is that when a change is made it often introduces
unforeseen side effects. Fixing a bug has a great chance
of introducing a new bug” (pg. vii). They continue:

As flaw-fixing introduces new flaws, more and more time is
spent on fixing these secondary problems rather than on
correcting the structure that caused the original problem.
The system steadily becomes less and less well ordered.
Some complex systems reach a point where maintainers
cease to gain ground. Each new fix introduces new prob-
lemns. The system has become too unstable to be a base for
progress. {p.8)

Martin and McClure further refine the maintenance
category:

... most maintenance work falls into the category of
perfective maintenance. This Is somewhat of a revelation to
the data-processing community, challenging the common
belief that most maintenance effort is expended in a “fire-
fighting” mode reacting to emergency tepairs. In reality,
most maintenance work can be anticipated and planned
much like new development activities, Furthermore, user
enhancements dominate the perfective maintenance cate-

gory. {p.28)

This phenomenon results in the whole system of
service requests becoming bogged down. An apparent
lack of responsiveness from the computer department
produces a high level of institutional frustration with
computing. This problem is extremely difficult to assess
at a given institution because of a number of factors.

First, the queue of service requests is frequently not
available for general review. The computing department
and/or a given user department may not encourage
general dissemination. Second, poor communication
results. Third, both the computing department and a
given user department may wish to minimize the amount
and effect of flaw-fixing for fear of negative attention to
themselves. The result at many institutions is a growing
queue of service requests and corresponding frustration
throughout the organization.

Identification. Corrupted data resulting from this
phenomenon come in various forms, and, consequently,
may be both easy and hard to spot.

Suggested Action. Some of the classic tools of
information processing are important to use with this
problem: thorough analysis, design, and testing prior to
implementation in production. In the increasingly distri-
buted but integrated information system environment,
open communication is requisite. Service requests must
be thoroughly reviewed and prioritized by an office or
offices free of vested interests and representing an
institutional point of view. The central institutional
administration must back this point of view. Users
submitting service requests must, in some way, be
accountable for their requests. In most computing
environments, all parties must understand that comput-
ing is a limited resource and not all service requests can
be honored. It is far better to do a few service requests
well than to do many poorly.

.Running Obsolete Versions of a Program

This phenomenon may include the use of wrong
versions of maps, tasks, job streams, other modules,
etc. It is usually the result of an error committed by
someone in the computing department, although users
may enter incorrect parameters for a run prepared for
them, or, in some cases, they may do some of their own
programming which affects the data base. Irrespective
of the incorrect version of code and the responsible
party, the impact may range from incidental to disas-
trous. The results of this activity may go unnoticed
indefinitely,

Identificatlon. This form of data corruption may be
both easy and hard to spot, depending on the data that
are corrupted. Data integrity scans may provide a
means of early detection.

Suggested Action. The key to preciuding this problem
Is accurate, thorough documentation—documentation
that is used.

Restructuring Set Relationships on a Data Base

Often done in the interests of purging, but sometimes
done as a result of data-base enhancements, the impact
of this phenomenon usually is immediate and long
lasting. Figure 1 shows hypothetical set relationships
before and after a purge. A network DBMS structure is
presumed. The set relationships before a purge are one-
to-many from record A to record B and from record A to
record C. A one-to-one relationship is presumed be-




AIR Professional Fille, Number 33, Data Integrlty: Why Aren’t the Dala Accurate?

tween occurrences of records C and B. Programs may
be written to access occurrences of record B directly
from record A or through similar occurrences of record
C. Of course, occurrences of record C may be accessed
through record A.

If, as a result of a purge or other reason, selected
occurrences of record B are deleted without the deletion
of corresponding occurrences of record C, a clear
integrity problem results. The data base is restructured.
A unique occurrence of record B will not exist for each
unique occurrence of record C. Additionally, not only
are data no longer available on occurrences of B when
corresponding occurrences of C remain, but programs,
modules, etc.,, may abnormally terminate if they have
not been modified to accommodate the break in set
relationships. This phenomenon has a variety of impacts
that may be felt indefinitely.

Identification. This form of data corruption is usually
easy to spot.

Suggested Actlon. There are two keys to precluding
this kind of problem. First, open communication and

thorough documentation regarding the purge must exist,

prior to the purge. Thorough testing of the purge prior
to implementation must also be accomplished. Second,
offices responsible for reporting from the data base
must be in positions of authority to approve or dis-
approve the purge.

The Trade-off between Editing and Performance

Many of the aforementioned sources of data corrup-
tion are at least peripherally related to the absence of
adequate validation code or editing routines. However,

Red A
|
Rcd B b Rcd C
1 1
]
2 2
3 3

Before Purge

Figure 1. Set relationships before and after purging.

- the absence of such code stands on its own as a source

of data corruption. Programmers frequently do not like
to write this kind of code, and arguments are often
made by members of the computer department that
such code complicates programs, consumes resources,
and slows response time, When response time problems
exist and the queue of service requests is long, it is easy
to make the argument that additional editing capability
is not desired.

Interestingly, some users will argue against validation
code for the reason that they are unduly restricted in
their right to enter the data they want. This is a form of
gambling, and a heavy price may be paid in terms of
data integrity: validity and reliability. A particularly
difficult situation presents itself when a key user is
allowed to oppose editing, in concert with the computer
department. Another office that may have to access the
data base for reporting, such as an institutional research
office, will struggle to produce accurate reports,

Identification. This kind of data corruption is usually
easy to spot, depending on the data that are corrupted.

Suggested Action. The basic problem with this
phenomenon is the historic problem of consistent re-
sponsibility and authority. Often, offices that have the
authority to decide these issues do not have the
responsibility to report from the corrupted data base.
Conversely, offices with responsibility to report from the
corrupted data base (e.g., institutional research) often
do not have the authority to either clean the data or
contribute to decisions such as those having to do with
editing. Consistency of responsibility and authority must
be established. Offices interested in data integrity must
have the authority to contribute to this kind of declislon.

Rcd A
[ |
Rcd B Rcd C
1 1
2
Rcd B
3 3

After Purge




AIR Professional Flle, Number 33, Data Integrity: Why Aren't the Data Accurate? 6

Table 1

Summary of Data Corruption Sources, Identification, and Actions to Address Them

Suggested Action

Sources (Abbreviated)

Policies Easy
Changed Datum Meaning Easy
Hard
User Experimentation Easy
Easy/Hard
Purging/Consolidation Easy
Referential Integrity Hard
Analysis & Testing Easy/Hard
Obsolete Code Easy/Hard
Restructuring Easy
Editing vs. Performance Easy/Hard

ldentification

Analysis, Design & Testing
Open Communication

Open Communication
Internal Education

Data Integrity Commitment
Scanning Software

Same As Above

internal Education

Open Communication

Scanning Software

Data Integrity Commitment
Commitment To Test Environment
Scanning Software

Documentation
Data Integrity Commitment

Scanning Software
Impose Referential Integrity Constraints

Analysis, Design & Testing

Open Communication

Review & Prioritize Service Requests
by Third Party

Backing by Central Administration

User Accountability

Do a Few Well

Scanning Software
Documentation

Open Communication
Documentation
Testing

Responsible Approval

Responsibility & Authority

Technological Tools

The current literature of computing contains frequent
references to modern technological tools such as intelli-
gent systems, computer-aided software engineering
(CASE) tools, data dictionaries, etc. These tools are
powerful and capable of increasing staff productivity.
They are, however, no panacea for solving the kinds of
data corruption problems discussed in this paper. For
example, in the DBMS environment, a data dictionary
could be used to keep obsolete code from being
executed. A data dictionary also could be used to
maintain standard editing routines. However, some
computer sites do not operate a DBMS. Some that do
may not adequately use their dictionaries. Some do not
have data dictionaries. Finally, there is no standard
definition of a data dictionary. A data dictionary may be
a powerful tool, but it alone wiil not solve the kinds of
problems discussed here.

CASE tools are in an early stage of development.
They tend to be specialized in focus and may hold

promise for addressing some of the problems we have
discussed. Currently, however, with the exception of
some capability lodged in the DBMS itself (for example,
referential integrity in DB2), there has been minimal
impact of these tools on the sources of data corruption.

The human being is the critical link in the successful
operation of a computerized system. All of the sources
of data corruption discussed here may be found in any
computer operation. The current state of technological
evolution is not such that tools themselves can solve
these problems.

Conclusion

This paper has focused on accuracy and reliability
aspects of data integrity and its maintenance. Con-
cerned, involved, and responsible institutional profes-
sionals in data administration, institutional research,
analytical studies, admissions and records, and other
offices will benefit and be challenged by raised aware-
ness of the accuracy and reliability aspects of data
integrity.




AIR Professional Flle, Number 33, Data integrity: Why Aren’t the Data Accurate?

An underlying theme in this paper is consistency of
responsibility and authority. The central institutional
administration must value data as a corporate resource,
establish a process of relationships that openly declares
that stance and commit resources to that effort.

Dr. Kaye Howe, vice chancellor, University of Colorado-
Boulder, in a personal communication dated February
15, 1989, presented an analogy to describe the impor-
tance of data in an institution’s health and effectiveness.
She said that data in the institution is like biood in a
living organism, If data (blood) are corrupted (diseased),
the organization (living organism) is weakened and sick.
Some and perhaps all parts of the organization become
weakened. The whole organization struggles for health
and effectiveness.

Serious commitments to the maintenance of data
integrity, throughout the organization, are essential for
institutional well-being.

References

Brathwaite, K. S. (1985). Data administration: Selected toplcs of data
control. New York: John Wiley & Sons,

Brooks, F. P. (1982). The mythical man-month: Essays on software
engineering. Massachusetts: Addison-Wesley.

Date, C. J. & White, C. J. (1988). A gulde to DB2 (2nd ed.). Massa-
chusetts: Addison-Wesley,

Martin, J. & McClure, C. (1983). Software maintanance: The problem
and its solutions. New Jersey: Prentice-Hall,




rofessional Flle, Number éay,f, Data In

For information about back issues of the AIR Professional File:

The Association for Institutional Research
314 Stone Building, Florida State University
Tallahassee, Florida 32306-3038 (904) 644-4470

The AIR Professional File is intended as a presentation of
papers which synthesize and interpret issues, operations, and
research of Interest in the field of institutional research.
Authors are responsible for material presented. The File is
published up to four times per year by the Assoclation for
Institutional Research.

Editor-in-Chief: John A, Lucas
Director, Planning & Research
William Rainey Harper College
Algonquin & Roselle Roads
Palatine, |L 60067

Managing Editor: Jean C. Chulak
Administrative Director
The Association for
Institutional Research
314 Stone Buliding
Florida State University
Tallahassee, FL. 32306-3038

©1989 The Association for Institutional Research




