
5Winter 2025 Volume

A Machine Learning Approach 
to Predicting Master’s Degree 
Completion at the University of 
Texas at San Antonio

Fikrewold Bitew and Lauren Apgar

About the Authors

Fikrewold Bitew, PhD, and Lauren Apgar, PhD, have 

a combined 20 years of experience in the field 

of institutional research. They currently work in 

Institutional Research and Analysis at the University 

of Texas at San Antonio.

Acknowledgments

We would like to thank the Institutional Research 

and Analysis team at the University of Texas at San 

Antonio for their feedback and suggestions. Thank 

you to Khoi To for his insightful comments on an 

earlier draft of this manuscript.

Abstract

The pursuit of a master’s degree is a significant 

academic endeavor, one that is influenced by a 

complex interplay of factors extending beyond 

traditional academic performance. In this study, 

we estimate the determinants of timely master’s 

degree completion (i.e., within 3 years) using 

modern machine learning models such as random 

forest, decision tree, extreme gradient boosting, 

gradient boosting, and AdaBoost. After analyzing 15 

years of master’s cohort data from the University 

of Texas at San Antonio, a large, public, Hispanic-

serving university, our findings indicated that 

gradient boosting with hyperparameter tuning 

was a reasonably superior machine learning 

model for predicting master’s degree completion 

at our institution. The selected model accurately 

predicted more than 80% of the cases in the 

study and demonstrated superior predictive 

performance compared to the traditional logistic 

regression model. In support of nontraditional 

student retention theory, the model identified that 

students with higher GPAs, younger students, full-

time students, and students who took out student 

loans were more likely to graduate within 3 years 

than students with lower GPAs, older students, 

part-time students, and students without loans, 

respectively. Furthermore, demographic-structural 

components, which are often overlooked in machine 

learning models, proved to be important: students 

in departments with a larger number of faculty 

and higher representation of female and non-

White faculty members had a greater likelihood of 

completing their master’s degree successfully.
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INTRODUCTION
The number and percentage of the U.S. adult 

population with graduate-level degrees have 

grown substantially over the past decade. Between 

academic years 2011–12 and 2021–22, the number 

of master’s degrees awarded increased 16%, from 

170,200 to 203,900 (National Center for Education 

Statistics, 2024). Despite the growth in the number 

of master’s degrees conferred, the United States 

lacks nationwide data on which students begin a 

master’s program but do not complete it. State-level 

data suggest that non-completion is a critical issue 

for students seeking master’s degrees. For example, 

almost one-quarter (24%) of students seeking 

master’s degrees from public institutions in Texas do 

not complete their degree within 5 years, according 

to our (the authors’) analysis of data retrieved from 

the Texas Higher Education Coordinating Board 

(2022) Accountability System.

Completing a master’s degree offers both advanced 

expertise in a field and increased earning potential. 

On average, graduate degree holders earn more 

than individuals with a 4-year degree (Pyne & 

Grodsky, 2020; Valletta, 2018). Students take 

substantial risks in pursuing a graduate-level degree, 

however, since graduate and professional students 

are more likely than undergraduate students to pay 

full tuition for their degrees (Woo & Shaw, 2015). 

Graduate and professional degree seekers have 

been taking out progressively larger student loans 

to finance their degrees over the past 20 years 

(Pyne & Grodsky, 2020). The increasing demand 

for advanced degrees, coupled with financial 

risks to students, underscores the importance 

for researchers and university administrators to 

understand the factors that influence master’s 

degree completion.

Undergraduate degree completion represents a 

major area of focus in postsecondary education 

research, and universities worldwide have used 

educational data mining to predict students 

who are at risk of dropping out (Shafiq et al., 

2022). Educational data mining often relies on 

administrative records as sources, then applies 

machine learning models to predict whether 

undergraduates will drop out of the institution 

(Shafiq et al., 2022). Supervised machine learning 

approaches in educational data mining include a 

wide array of predictors in their models (Shafiq et 

al., 2022), from social and academic integration 

within the institutional setting (Tinto, 1975) to 

student finances, family responsibilities, and 

outside employment (Bean & Metzner, 1985). 

Identifying factors that differ or are similar to those 

that influence undergraduate students can allow 

postsecondary institutions to develop targeted 

strategies to improve master’s degree completion.

Additionally, systematic reviews of models in 

educational data mining show that most predictors 

included are at the individual-student level; only 

one study incorporated instructors’ actions, such 

as posting grades (Shafiq et al., 2022). Studies lack 

predictors at the department level, but research in 

higher education on doctoral students highlights 

the importance of departmental environment and 

faculty mentoring (Council of Graduate Schools, 

2013). Adding these variables to analyses can 

increase prediction accuracy in modeling, and so 

offer insights on the impact of institutional structure 

on completion.

In this study, we estimated several machine learning 

models to predict master’s degree completion within 

3 years from the University of Texas at San Antonio 

(UTSA), a Hispanic-serving, large, public institution in 

Texas. We evaluated the prediction accuracy across 
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different models, identified students at risk of non-

completion, and highlighted the 10 most important 

factors that predicted on-time degree completion 

(i.e., graduating within 3 years of starting a master’s 

degree). In addition to variables such as GPA, age, 

and enrollment (i.e., whether students are part time 

or full time), demographic-structural components 

at the department level were important factors for 

accurate estimates of degree completion.

LITERATURE REVIEW
The theoretical framework behind undergraduate 

and doctoral student retention and degree 

completion can inform master’s degree completion. 

Theoretical underpinnings stem from student–

institution fit (Spady, 1970) and social integration 

(Tinto, 1975): as students develop peer and faculty 

relationships inside and outside the classroom, 

they become more attached to the university 

and are more likely to persist. However, the 

environment outside the institutional setting has 

more sway over nontraditional undergraduate 

students (Bean & Metzner, 1985) than it does over 

their traditional colleagues. Even if nontraditional 

students are socially integrated at the university, 

financial difficulties, outside employment, or family 

responsibilities conflict with their degree completion 

(Bean & Metzner, 1985). This pattern may also hold 

for master’s students.

Although a thorough accounting is beyond the scope 

of this literature review (see other reviews, e.g., 

Mayhew et al. 2016), studies have used regression 

models to demonstrate quantitative support for 

these theories at the undergraduate level. In support 

of Bean and Metzner’s (1985) theory, studies have 

shown that part-time enrollment correlates with 

work and family commitments (Nicklin et al., 2019), 

which can extend the timeline for degree completion 

or prevent it altogether. Full-time undergraduates 

often complete their degrees more quickly due 

to the continuity in learning and progression that 

their full-time status allows (Taniguchi & Kaufman, 

2005). Undergraduates who are employed while 

in college are less likely to complete their degrees; 

among those who do complete them, however, 

they take longer to complete their degree than their 

nonworking colleagues (Ecton et al., 2023). Low- and 

moderate-income undergraduate students who 

receive need-based institutional aid are more likely 

to graduate within 6 years than are those who do 

not receive this type of aid (Price & Davis, 2006).

Not as many studies have focused on master’s 

student retention and completion as undergraduate 

students; those studies that have done so largely 

use regression models and their findings support 

Bean and Metzner’s (1985) theory. In Lenio’s (2021) 

study of online master’s student retention, employer 

financial support, student household income, 

student overall satisfaction with an institution’s 

offices and support services, and student self-

efficacy, as measured by a self-reported item on 

the importance of graduating from the institution, 

significantly predicted 1-year retention. Older 

master’s students enrolled in a large, northeastern 

university were more likely to drop out and were 

less intent on persisting than were their younger 

colleagues (Cohen, 2012). Age may have served as 

a proxy for external environmental difficulties not 

measured by the study, including child care and/or 

work conflicts (Cohen, 2012).

Regression models have also been used to examine 

the relationship between social and academic 

involvement and undergraduate student retention 

and degree completion. Although Tinto (1975) views 

social integration as a psychological construct, 
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research often measures student involvement in 

various activities. Using the Beginning Postsecondary 

Students (BPS:96/01) dataset (National Center for 

Education Statistics, 2003) in a multilevel event 

history model, Chen (2012) shows that social 

involvement (e.g., participation in fine arts activities, 

intramural sports, varsity sports, school clubs, 

and social activities with friends from school) and 

academic involvement (e.g., participation in study 

groups, meeting with an academic advisor, social 

contact with faculty, and talking with faculty about 

academic matters outside of class) decrease the 

odds of student dropout.

Despite the common use of regression analysis 

in the aforementioned studies, machine learning 

techniques have gained prominence as valuable 

tools for predicting and understanding factors that 

contribute to undergraduate student retention 

within U.S. institutions (Huo et al., 2023). Machine 

learning models incorporate a diverse range 

of variables that influence retention, including 

academic performance, financial aid, student 

demographic information, institutional enrollment 

patterns, and engagement with academic resources. 

Machine learning models analyze historical data 

to generate predictions that inform educators 

and administrators of the likelihood that any 

undergraduate student drops out. Often machine 

learning favors forms of modeling besides linear 

and logistic regression, since other types of models 

and computational models uncover different 

patterns and trends that more-accurately predict 

which students are likely to be retained, and so will 

eventually complete their degree.

While it is important to apply machine learning 

models to master’s student degree completion 

because those students are an overlooked 

population, it is also important to incorporate 

a measure of social integration, which many 

educational data mining models lack (Shafiq et al., 

2022). Mentoring and advising are not commonly 

collected institutional data points, as suggested 

by the lack of studies that include these types of 

indicators (Shafiq et al., 2022). However, Main  

(2018) has demonstrated that the structural-

demographic composition of a department is 

related to doctoral degree completion. Drawing 

from Kanter’s (1977) theory of proportions, Main 

proposed that, as faculty sex-ratios become more 

balanced within departments, tokenism, which 

evokes sex-typed or stereotypical roles, lessens. 

Main finds that female doctoral students are more 

likely to complete their degree in departments with 

higher proportions of female faculty. Similarly, racial/

ethnic diversity among faculty members correlates 

with higher student graduation rates across 4-year 

institutions and community colleges (Stout et 

al., 2018). If direct measures of interactions with 

faculty are not available, structural-demographic 

department composition could serve to approximate 

the type of environment that would encourage 

student integration.

DATA AND METHODS
This study uses 15 years of master’s student 

cohort data (entering Fall 2005 to Fall 2019) at our 

institution: the University of Texas at San Antonio 

(UTSA), a large, public Hispanic-serving institution 

located in the southern United States (N = 21,182). 

The outcome of interest is a dichotomous variable: 

completion of a master’s degree from the institution 

within 3 years of entering. At our institution over 

this period, 59% of master’s students completed 

their degree within 3 years (see Table 1). The data 

include individual-student level demographics, 

academic performance measures, and student 
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financial aid information available in the university’s 

student information system. We used the Python 

programming language (version 3.0) for data 

processing and analysis. We chose Python because 

it has many libraries for machine learning tasks, the 

coding language is relatively simple, and because it 

easily incorporates SQL, which our office relies on 

to pull student data out of our student information 

system. In addition, we chose it because it is a freely 

accessible program.

Table 1. 3-Year Completion Status of Master’s Students, by Background Characteristics

 Completed Degree within 3 Years 

 Yes No Total

Background Characteristics # % # % # %

Gender      

 Female 7,123 59% 4,990 41% 12,113 100%

 Male 5,326 59% 3,742 41% 9,068 100%

 Unknown  0% 1 100% 1 100%

Race/Ethnicity      

 American Indian or Alaska Native 20 34% 39 66% 59 100%

 Asian 520 65% 286 35% 806 100%

 Black or African American 729 57% 553 43% 1,282 100%

 Hispanic or Latino 4,461 55% 3,634 45% 8,095 100%

 International 1,852 81% 439 19% 2,291 100%

 Native Hawaiian or 

 Other Pacific Islander 23 64% 13 36% 36 100%

 Two or More Races 213 59% 151 41% 364 100%

 Unknown or Not Reported 462 58% 333 42% 795 100%

 White 4,169 56% 3,285 44% 7,454 100%

First-Generation Status      

 First Generation 5,193 56% 4,113 44% 9,306 100%

 Not First Generation 6,693 60% 4,371 40% 11,064 100%

 Unknown 563 69% 249 31% 812 100%

Full-time/Part-time Status      

 Full-Time Status 7,453 73% 2,777 27% 10,230 100%

 Part-Time Status 4,996 46% 5,956 54% 10,952 100%

Received Scholarship      

 Yes 1,552 74% 537 26% 2,089 100%

 No 10,897 57% 8,196 43% 19,093 100%

Received Grant      

 Yes 1,774 64% 982 36% 2,756 100%

 No 10,675 58% 7,751 42% 18,426 100%
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Table 1. 3-Year Completion Status of Master’s Students, by Background Characteristics (continued)

 Completed Degree within 3 Years 

 Yes No Total

Background Characteristics # % # % # %

Took a Loan      

 Yes 5,842 59% 4,051 41% 9,893 100%

 No 6,607 59% 4,682 41% 11,289 100%

Research/Teaching Assistantships      

 No 11,776 58% 8,494 42% 20,270 100%

 Yes 673 74% 239 26% 912 100%

College      

 Business 3,295 72% 1,281 28% 4,576 100%

 Education and  
 Human Development 3,831 57% 2,867 43% 6,698 100%

 Engineering and  
 Integrated Design 1,606 66% 812 34% 2,418 100%

 Health, Community, and Policy 1,786 50% 1,794 50% 3,580 100%

 Liberal and Fine Arts 794 46% 948 54% 1,742 100%

 No College  0% 1 100% 1 100%

 Sciences 1,137 52% 1,030 48% 2,167 100%

GMAT (Average) 550  546  549 

GRE (Average) 299  299  299 

GPA (Average) 3.7  3.4  3.6 

Age (Average) 28  31  29 

White, non-Hispanic Faculty (Average)  56%  59%  57%

Female Faculty (Average)  42%  47%  44%

Total  12,449 59% 8,733 41% 21,182 100%

Source: 15 years of entering master’s cohort data from UTSA.

Variables that assess the nontraditional student 

model and highlight the financial environment that 

the student faces include dichotomous indicators 

of whether or not a student received a grant, 

scholarship, or loan during their first year in the 

master’s program. We include an indicator for 

on-campus employment as Research/Teaching 

Assistantships. If a student ever worked as research 

or teaching assistant while enrolled at UTSA, then 

we considered them to be employed. Additionally, 

we include enrollment status: students enrolled in 

at least 9 credit hours during their first term were 

full time, and students enrolled in 8 or fewer credit 

hours were part time.

Student academic performance is measured 

through the last available cumulative GPA on record 

for the student. GRE and GMAT scores are added 

as continuous variables and categorical variables 

categorized into quintile groupings. Students who 
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did not take a test were grouped into an additional 

“no test” category. GRE and GMAT scores are 

optional for admission into many master’s programs 

at UTSA. Categorical statistics are not shown in Table 

1, but are available upon request. An advantage of 

machine learning methods is that these models will 

accept both continuous and categorical measures in 

the same dataset. All dichotomous and categorical 

variables were encoded using either one-hot 

encoding or label encoding.

Variables that assess the structural-demographic 

composition model are department size and 

the demographic composition of faculty in each 

department for master’s students entering cohort 

year. We include a variable measuring the percent of 

female faculty in a department and another variable 

measuring the percent of White, non-Hispanic 

faculty in a department. Indicators for broad fields 

(engineering, sciences, business, social science, 

education, and liberal and fine arts) are also included 

in the model.

The individual-student level demographic variables 

include a dichotomous indicator for female gender 

and race/ethnicity measured through the Integrated 

Postsecondary Education Data System (IPEDS) 

categories. IPEDS first identifies students who are 

not citizens or legal permanent residents of the 

United States as International. For the remaining 

students, Hispanic/Latino is prioritized, followed 

by racial identification as American Indian or 

Alaska Native, Asian, Black or African American, 

Native Hawaiian or Other Pacific Islander, or White. 

Students sometimes identify as Two or More Races. 

Students who do not identify their race or ethnicity 

are classified as Unknown or Not Reported. First-

Generation Status refers to students whose parents 

(or parent) have not obtained a bachelor’s degree. A 

continuous variable for age is also included.

Authors debate the use of demographic variables 

in predictive machine learning models. Some 

promote the use of demographic variables as a 

means to validate the fairness of model, instead 

of using them as predictors (Baker et al., 2023). 

Other authors promote the use of demographic 

variables as predictors in models because it results 

in better prediction; the inclusion of structural 

racism or sexism results in different outcomes for 

students that are not captured by other predictor 

variables (Wolff et al., 2013). Excluding demographic 

variables may obstruct opportunities to recognize 

racist practices. Not all models can measure every 

system and policy an institution has in place, and 

researchers’ interpretations of model results with 

group disparities in degree completion should 

emphasize unmeasured structural factors. Similarly, 

measures of department demographic composition 

would point to leaders and administrators examining 

the types of mentoring opportunities and faculty–

student interactions that occur within a department.

Analytic Strategy

We applied five machine learning models (random 

forest, decision tree, extreme gradient boosting 

[XGBoost], gradient boosting, AdaBoost) and one 

traditional model (logistic regression) to identify the 

most appropriate model with the highest predictive 

power of a master’s student degree completion. 

Decision tree models take tables as input, where 

tables can be numeric or categorical attributes 

(Safavian & Landgrebe, 1991). The attributes split 

the study sample, and splitting is repeated in a 

top-down manner to attain pure nodes, or the most 

homogeneous subset of data, based on a purity 

score. Random forest is a supervised ensemble 

learning method that acts based on decision trees 

(Ho, 1995). The random forest model repeatedly 

samples the variables in the training dataset and 
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forms trees. After many of these trees are formed, 

the predictive performance of each variable is 

measured, and the best set of variables is obtained.

In contrast, boosting models (e.g., XGBoost, gradient 

boosting, and AdaBoost), build models sequentially 

in an adaptive manner, then combine them with a 

deterministic strategy. AdaBoost creates a strong 

classifier by combining weak classifiers, which are 

predictors that perform poorly but are better than 

random guessing (William, 2021). In the gradient 

boosting model, subsequent models attempt 

to reduce the errors of the previous model. For 

a dichotomous outcome, the gradient boosting 

classifier is used to minimize the loss function (Saini, 

2021). Finally, XGBoost is a scalable implementation 

of the gradient boosting framework (Chen & 

He, 2018); compared to prior models, it offers 

better controls against overfitting by using more-

regularized algorithm formalization.

Following standard methods for machine learning 

techniques, data were split into two sets: training 

and testing. Models were calculated from the 

training data, then applied to the test dataset, and 

model accuracy was assessed. Seventy percent of 

data were used for training, while the remaining 30% 

of data were held out as a test or validation set (N = 

4,236); this 70–30 split is recommended for training 

and validation since it enables enough data points 

to be used for training to ensure a sensitive and 

complex model (Gholamy et al., 2018).

Additionally, because 41% of our master’s students 

failed to earn their degree within 3 years in both 

the overall and test samples, we faced issues of 

imbalanced classification. Ideally, there would be a 

50–50 split of successful and unsuccessful students 

in the data so that models learn effectively. To 

address the imbalance, we replicated students 

who had not completed their degree and added 

them to our training dataset. We then synthesized 

these additional cases using the Synthetic Minority 

Oversampling Technique (SMOTE) (Chawla et al., 

2002). SMOTE helps to increase the size of the 

minority class (i.e., students who did not complete 

their master’s degree within 3 years) while 

maintaining the original distribution of the majority 

class (students who completed their degree within 

3 years). SMOTE addresses the imbalance problem 

and allows machine learning models to make better 

predictions by reducing the bias toward the majority 

class. As shown in Figure 1, after applying SMOTE 

50% of the test dataset did not complete their 

degree within 3 years. After addressing imbalanced 

data using SMOTE, the machine learning models 

were trained based on 10-fold cross validation on 

the training set and the performance was estimated 

on the testing set.

Figure 1. Before and After Oversampling by Master’s Degree Completion Status

Source: 15 years of entering master’s cohort data from UTSA.
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Hyperparameter Tuning

A hyperparameter is a type of parameter, external 

to the model, that is set before the learning process 

begins. It is tunable and can directly affect how well 

a model performs. In this analysis, we used the 

random search hyperparameter tuning method 

instead of the grid search method. A random 

search uses a large (possibly infinite) range of 

hyperparameter values, and randomly iterates a 

specified number of times over combinations of 

those values. The number of iterations is specified 

by the researcher.

In this analysis, we ran all the models first with 

the default parameters, then compared the 

models with default parameters with models we 

ran after choosing the best parameters using 

hyperparameter tuning (see Appendix A). Except for 

logistic regression, all models with hyperparameter 

tuning were found to show higher predictive ability 

than models with default parameters. Thus, in the 

Results section of this article, only models with 

hyperparameter tuning are presented (except for 

logistic regression).

Model Evaluation

To verify each model’s performance in terms of 

classifications and to help identify the best model, a 

confusion matrix (also known as an error matrix) was 

used (see Figure 2). A confusion matrix for bivariate 

outcomes is a two-by-two table showing values of 

true negative (tn), false negative (fn), true positive 

(tp), and false positive (fp) resulting from the test 

data. With these data classified, we next calculate 

precision (i.e., prediction accuracy), sensitivity (i.e., 

recall), specificity, and F1 score rates.

Figure 2. Confusion Matrix

Pr
ed

ic
te

d

Source: Kulkarni et al., 2020.

Real

Positive Negative

Positive True Positive (tp)

Negative True Negative (tn)

Precision: What percentage of students, as predicted 

by the model to complete their master’s degree 

within 3 years, truly completed their degree within 

that time?

precision = 
tp

tp + fp

Sensitivity (i.e., recall): What percentage of students 

who truly completed their degree within 3 years 

does the model predict as completers?

sensitivity = 
tp

tp + fn

Specificity: What percentage of students who truly 

failed to complete their degrees within 3 years does 

the model predict as non-completers?

specificity = 
tn

tn + fp

We also estimate an F1 score that combines 

precision and recall into a single metric. The F1 score 

has been designed to work well on imbalanced data.

F1 score = 2 x 
Precision x Recall
Precision + Recall

False Negative (fn)

False Positive (fp)
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Model Interpretation/Explanation Using 
SHapley Additive exPlanations

After identifying the best-fitting model using metrics 

from the confusion matrix, we use SHapley Additive 

exPlanations (SHAP) to interpret the predictions 

of the machine learning model (Lundberg & Lee, 

2017). In machine learning research, it is rare to 

see explanation and interpretation of models, 

due to their black-box nature. The fundamental 

concept behind the SHAP analysis is to compute 

the marginal contribution of each predictor toward 

the outcome variable prediction result. We plot the 

aggregate SHAP value of the predictor for every 

sample to show whether that predictor increases 

or decreases a student’s likelihood of master’s 

completion by their 3rd year. SHAP also allows us to 

identify which predictors are important in predicting 

degree completion within 3 years by quantifying 

each variable’s contribution to the prediction and 

aggregating it across the samples.

The overall data preparation and analysis process is 

presented in Figure 3.

Figure 3. Flow Chart of Data Preparation and Analysis Plan
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RESULTS
Table 1 presents selected descriptive statistics 

of our master’s cohorts by their 3-year degree 

completion status. At our institution, more than 

half of the master’s students were female, although 

there are no observable completion differences by 

gender. A sizeable number of students identify as 

Hispanic or Latino (38%), followed by White (35%); 

Hispanic or Latino and White students have similar 

master’s degree completion rates at 55% and 56%, 

respectively. International students make up 11% of 

all master’s students; international students have the 

highest master’s degree completion rates at 81%. 

First-generation students (44% of master’s students) 

have a lower (56%) master’s degree completion rate 

compared to students with at least one parent who 

had obtained a bachelor’s degree or higher (59%).

Indicators of student financial environment show 

that not many students were scholarship recipients; 

instead, almost half of all master’s students took 

out a student loan. However, students who took 

out a loan completed their degree at similar rates 

as students who did not take out loans. Among 

full-time master’s students, 73% completed their 

degree within 3 years, whereas only 46% of part-

time students completed their degree within 3 

years. The average age of students who completed 

their degree within 3 years was 28, as compared 

to an average age of 31 for non-completers. This 

difference in age suggests that students with fewer 

outside responsibilities are more likely to complete 

their degree.

Most of our master’s students are either in the 

college of education (32%) or the college of 

business (22%). Students in business complete 

their degrees at the highest rate (72%), followed 

by students in engineering (65%) and education 

(57%); only 46% of liberal and fine arts students 

graduate within 3 years. Structural demographic 

composition of departments suggests that there 

is a relationship between department racial/ethnic 

diversity and degree completion. Among students 

who earn their master’s degree, the departments 

where students pursue their degree average 56% 

White, non-Hispanic faculty compared to 59% 

White, non-Hispanic faculty among non-completers. 

Departments average 42% female faculty among 

completers compared to 47% among non-

completers. Finally, higher cumulative GPA is highly 

correlated with higher levels of master’s degree 

completion (Figure 4).
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Figure 4. Distribution of Students’ Cumulative GPA by Master’s Completion Status (Yes (1) / No (0))

Source: 15 years of entering master’s cohort data from UTSA.
Note: w.r.t = with respect to.

Models for Predicting Master’s 
Completion

Tables 2 and 3 show the training and validation 

performance results for predicting master’s degree 

completion for the six models estimated in this 

study. The five modern machine learning models 

(random forest, decision tree, XGBoost, gradient 

boosting, AdaBoost) showed a better predictive 

ability than the traditional model (logistic regression). 

We then check for overfitting to ensure that the 

models provide accurate predictions—not just for 

the training dataset, but also for testing data. When 

data scientists use machine learning models to 

estimate predictions, they often rely on 70% of their 

data to train their model. They then use their model 

fitted on their training dataset to predict outcomes 

for the remaining 30% of their data, or the testing 

dataset. When overfitting occurs, the model will 

show a high accuracy score on training data but a 

low accuracy score on test data. An overfit model 

can give inaccurate predictions and will not perform 

well for new data in the future.
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Table 2. Training Performance Indicators of Five Machine Learning Models and a Traditional Model 
(Logistic Regression)

Measure Logistic Random Decision Extreme  Gradient AdaBoost
Regression Forest Tree Gradient Boosting Boosting

Accuracy             0.685 0.996 0.996 0.636 0.731 0.632

Recall 0.715 0.996 0.994 1.000 0.882 0.991

Precision 0.674 0.996 0.999 0.578 0.877 0.577

F1  0.894 0.996  0.996 0.733 0.768 0.730

Source: 15 years of entering master’s cohort data from UTSA 

.

Table 3. Validation Performance Indicators of Five Machine Learning Models and a Traditional 
Model (Logistic Regression)

Measure Logistic Random Decision Extreme  Gradient AdaBoost
Regression Forest Tree Gradient Boosting Boosting

Accuracy 0.700 0.740 0.870 0.702 0.773 0.704

Recall 0.731 0.798 0.892 0.997 0.876 0.994

Precision 0.752 0.789 0.732 0.884 0.769 0.888

F1 0.741 0.783 0.712 0.797 0.819 0.798

Source: 15 years of entering master’s cohort data from UTSA.

A significant degree of overfitting was detected for 

the random forest and decision tree models. While 

these models demonstrated high accuracy, recall, 

precision, and F1 scores on the training datasets, 

their scores on the testing datasets were lower  

than on training datasets. As a result of overfitting, 

these models are unable to provide precise 

predictions. Thus, we compared the remaining three 

models (XGBoost, gradient boosting, and AdaBoost) 

to ascertain the optimal model.

There are several evaluation metrics we can use 

to adjudicate between the remaining models. 

The accuracy metric is best used when we are 

interested in correctly predicting both completions 

and non-completions. For example, the gradient 

boosting model correctly predicted student degree 

completion outcomes 77% of the time in the 

testing data, compared to 70% for XGBoost and 

AdaBoost models. Recall is commonly used when 

correctly classifying an event that has already 

occurred, such as fraud detection, and when we 

are focused on identifying the true positives as 

often as possible. For this analysis, however, the F1 

score integrates both the recall and the precision 

measures. Since it is a more comprehensive 

measure, we use the F1 score to evaluate between 

the three boosting models. XGBoost and AdaBoost 

models have relatively similar performance, with 

a slightly better performance observed for the 

gradient boosting model.
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Area Under the Curve–Receiver 
Operating Characteristic

The Area Under the Curve–Receiver Operating 

Characteristic (AUC–ROC) curve is a performance 

measurement for the classification problems at 

various threshold settings. ROC is a probability curve 

plotting the true positivity rate (sensitivity) against 

the false positivity rate (1 - specificity). The AUC 

represents the degree or measure of separability, 

summarizing how much the model is capable of 

distinguishing between classes. The higher the AUC, 

the better the model is at predicting non-completers 

as non-completers, and completers as completers. 

In other words, the AUC denotes the percentage 

of the total cases that were predicted correctly by 

a model. Generally, an AUC between 0.7 and 0.8 is 

fair, between 0.8 and 0.9 is good, and 0.9 or above is 

excellent (Nahm, 2022).

The AUC–ROC curve (Figure 5) prefers the tuned 

gradient boosting model. The ROC curve for this 

model (bold red line in Figure 5) is the highest 

of all models, so does a better job of classifying 

the completers as completers. The AUC score of 

0.828 is the farthest from 0.5, indicating the model 

is not classifying correctly, and the closest to 1, 

indicating the model perfectly distinguishes between 

completers and non-completers. The AUC score of 

0.828 can be interpreted as meaning that the model 

correctly predicted 82.8% of total cases.

Figure 5. Area Under the Curve–Receiver Operating Characteristic Plot

Source: 15 years of entering master’s cohort data from UTSA.
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Model Predictors

As described above, the accuracy results indicated 

that the tuned gradient boosting model was the 

best in predicting master’s degree completion 

based on its F1 score, recall, and AUC–ROC. We 

then identify the top-10 predictor variables from 

this model based on the mean decrease in the 

Gini coefficient for master’s degree completion 

(see Figure 6). These predictors are (1) last-earned 

cumulative GPA, (2) enrollment status as a part-time 

student, (3) the percentage of female faculty in the 

student’s department, (4) the percentage of White, 

non-Hispanic faculty in the student’s department, 

(5) student age, (6) the number of faculty in the 

student’s department, (7) loans, (8) scholarships, 

(9) whether the student is studying in the college 

of sciences, and (10) whether the student is an 

international student per IPEDS race/ethnicity 

classification. While a strength of the tuned gradient 

boosting model is its ability to incorporate many 

predictors and to combine them to create a more 

accurate prediction, in order to focus on  

what theoretical frameworks receive the most 

support we present the top 10 predictors in 

our discussion. Additionally, a focus on the top 

10 predictors allows our institution to design 

interventions or policy changes around the factors 

that are expected to have the largest impact on 

master’s degree completion.

Figure 6. Top 20 Most Important Predictors of Master’s Degree Completion from the Tuned 
Gradient Boosting Model

Source: 15 years of entering master’s cohort data from UTSA.
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We also used the model agonistic SHAP global 

feature importance for identifying the top predictors 

of master’s degree completion. This technique 

examines the mean absolute SHAP value for each 

predictor across all the data, allowing us to identify 

the direction of the relationship between the 

predictor and master’s degree completion.

Figure 7 displays the SHAP global importance 

scores for the top 10 factors, visualized using a 

Beeswarm plot and generated with the optimized 

XGBoost model. Higher cumulative GPAs have a 

significant positive influence on master’s degree 

completion, whereas part-time study has a negative 

impact. Age, a higher percentage of female faculty 

in the student’s department, being an international 

student, and enrolling in the college of sciences 

or the college of liberal and fine arts also have a 

positive effect on master’s degree completion. In 

addition, not taking out loans and having a higher 

percentage of White, non-Hispanic faculty have a 

small negative impact.

Figure 7. Beeswarm Plot, Ranked by Mean Absolute SHAP Value Generated by Optimized Extreme-
Gradient Boosting Model

Source: 15 years of entering master’s cohort data from UTSA.
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DISCUSSION AND 
CONCLUSION
With an increasing number of students pursuing 

master’s degrees, it is essential to evaluate the 

master’s student experience and identify the factors 

contributing to their timely degree completion. 

While the master’s 3-year completion rate at UTSA 

is higher than the undergraduate 6-year completion 

rate, non-completion of a master’s within the 

expected 3 years is still prevalent. Accuracy in 

prediction becomes even more important when 

completion is higher, since it is more difficult to 

identify potential non-completers. Our study offers 

further evidence that machine learning models 

predict degree completion more accurately than a 

traditional logistic regression model. With a gradient-

boosting model in place, our institution can more 

precisely identify students who are likely to drop out 

or lag in their degree completion and target their 

services toward these students. Not only could UTSA 

save money by knowing which students to target 

with services, but it also potentially increases its 

alumni giving when more students graduate with a 

master’s degree.

We identified the variables that saw the greatest 

gains in the gradient-boosting model’s performance, 

combining some classic theoretical models along 

with an organizational demography approach. The 

top variables in our model included cumulative GPA, 

enrollment status, the demographic composition 

of the student’s department (e.g., percent female 

faculty and percent White, non-Hispanic faculty), 

student age, and student financial aid (e.g., 

whether a student took out loans and/or received 

scholarships). These and other variables in our 

model predicting master’s degree completion 

support much of what has been found in the 

literature, showing that theories developed for 

nontraditional and doctoral students also apply well 

to master’s students.

Academic performance is key, since students with 

higher cumulative GPAs are more likely to complete 

their degree within 3 years. While cumulative GPA 

is an important predictor, non-academic factors 

and outside environment also play a crucial role 

in master’s degree completion, as suggested by 

the nontraditional student model of retention. 

Enrollment status is the second-most impactful 

predictor of master’s completion and is indicative 

of the influence of the outside environment, such 

as employment and/or family conflicts (Nicklin 

et al., 2019). Similarly, younger students often 

transition to their graduate studies directly from 

their undergraduate experience at a time when they 

have fewer outside conflicts, whereas older students 

might be balancing school, work, and family 

obligations. The nontraditional student model of 

retention also highlights the importance of student 

finances. Students enter the master’s program with 

different levels of family and employer financial 

support, and financial aid can mitigate financial 

barriers. Grants and scholarships alleviate financial 

pressure, and students who received this type of aid 

were more likely to complete their master’s degree 

within 3 years. While the accumulation of debt can 

increase financial stress and negatively impact a 

student’s ability to persist (Baker et al., 2017), our 

study suggests that the master’s students who 

took out loans were more likely to complete their 

degree, possibly signaling student commitment 

to their degree and its potential returns. The 

importance of student finances and financial aid on 

master’s completion highlights how imperative it is 

for student financial needs to be met if they are to 

finish their degree within 3 years.
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While factors in the nontraditional model (enrollment 

status, age), as well as GPA, have the strongest 

associations with degree completion, this study 

also highlights the importance of organizational 

demography. Based on Kanter’s (1977) theory of 

proportions, higher proportions of female faculty 

and faculty of color might be associated with a 

departmental culture that facilitates the degree 

attainment of students of all genders and racial/

ethnic backgrounds. Kanter theorized that larger 

proportions of previously minoritized groups would 

reduce tokenism and reliance on stereotypes. 

Other research suggests that female faculty 

members serve as mentors for female students, 

fostering a sense of student belonging and inclusion 

(Johnson, 2014); a similar dynamic could be in 

play for students of color. Department size also 

plays a role in degree completion, since additional 

faculty can lead to increased attention from and 

availability to students (Rujimora et al., 2023). A 

limitation of structural-demographic measures is 

that these measures only hint at the environment 

of the department or existing programs that could 

result in student integration. The relationship 

between faculty demographics and master’s 

degree completion can be influenced by faculty–

student interaction, mentoring relationships, and 

institutional support systems. Nevertheless, the 

demographic composition of the department can 

influence relationship building, and can be used to 

approximate student integration when more-direct 

measures are not available.

One limitation of this study is its reliance on 

institutional data instead of survey data. As a result, 

we do not have indicators of student belonging 

and social integration into the university, or good 

measures of faculty–student interactions. More 

research is needed to assess whether the impact of 

organizational demography on master’s completion 

is mediated through a sense of student belonging. 

Furthermore, this study is a case study on one large, 

public 4-year institution. While the methodology 

may be generalized to other universities, the results 

and key predictors are specific to our institution. 

Additional research is needed to determine whether 

these variables also influence master’s completion 

within 3 years at other institutions, or if different 

theoretical models hold sway elsewhere. Still, the 

use of machine learning techniques for predicting 

master’s degree completion represents a significant 

step forward in educational research, along with the 

incorporation of structural-demographic factors. 

These data-driven insights hold immense potential 

for advancing student success and timely master’s 

degree completion in our institution and offer 

an exemplar that can be replicated across other 

institutions in the United States.

APPENDIX A: 
HYPERPARAMETER 
DEFAULTS AND TUNING
For tree base learners, the most common 

parameters are

• Max depth: The maximum depth per tree. A 

deeper tree might increase the performance, 

but it also increases the complexity and chances 

to overfit.  

Max depth = None is used. Default is 6.

• Learning rate: The learning rate determines 

the step size at each iteration while the model 

optimizes toward its objective. A low learning 

rate makes computation slower, and requires 

more rounds to achieve the same reduction in 

residual error as a model with a high learning 
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rate, but also optimizes the chances to reach 

the best optimum.  

The value we used here is 0.05. Default is 0.3.

• N estimators: The number of trees in our 

ensemble. Equivalent to the number of  

boosting rounds.  

The value must be an integer greater than 0. 

Default is 100.

• Column sample by tree: Represents the fraction 

of columns to be randomly sampled for each 

tree. It might improve overfitting. 

The value must be between 0 and 1. Default is 1.

• Subsample: Represents the fraction of 

observations to be sampled for each tree. A 

lower value prevents overfitting but might lead 

to underfitting. 

The value must be between 0 and 1. Default is 1.
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