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Abstract

While Markov chains are widely used in business and industry, they are used within higher education 

only sporadically. Furthermore, when used to predict enrollment progression, most of these models use 

student level as the classification variable. This study uses grouped earned student credit hours to track 

the movement of students from one academic term to the other to better identify where students enter or 

leave the institution. Results from this study indicate a high level of predictability from one year to the next. 

In addition, the use of the credit hour flow matrix can aid administrators in identifying trends and anomalies 

within the institution’s enrollment management process.
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INTRODUCTION
The current challenges facing higher education 

administrators create myriad reasons to find 

a crystal ball of sorts to effectively forecast 

enrollments, predict how many current students will 

stay at the institution, forecast new students, and 

adequately estimate revenues. These challenges 

have become only more pressing in recent years.

More than 20 years ago, when public college and 

university revenues were ample, administrators 

were not readily concerned about the future of 

college enrollments or student persistence. State 

appropriations were healthy and usually made up 

more than half of an institution’s revenue source. 

Moreover, with lower tuition more students could 

afford to obtain a degree without going into 

significant financial debt (Coomes, 2000).

The costs to run higher education have skyrocketed, 

however, causing today’s institutions to seek scarce 

resources within an ever-diminishing financial 

pool. As states tackle other pressing issues such 

as infrastructure, entitlements, and prisons, the 

amount they give to higher education naturally 

wanes. Decreased state revenue, therefore, 

compels institutions to increase tuition to make 

up the difference. According to Seltzer (2017), 

for every $1,000 cut from per student state and 

local appropriations, the average student can be 

expected to pay $257 more per year in tuition and 

fees. He further notes that this rate is rising.

In addition to decreases in state revenues, higher 

education administrators are under increasing 

pressure to be accountable to federal and state 

governments as well as to regional and discipline-

based accreditors. This accountability is increasingly 

seen in tougher reporting standards, outcomes-

based funding formulae, and mandated student 

achievement thresholds.

The closest resource to a crystal ball available to 

administrators is a set of mathematical prediction 

tools. These prediction tools range from simple 

formulae contained in spreadsheets to much more 

complicated regression, autoregressive integrated 

moving average (ARIMA), and econometric time 

series models.

According to Day (1997), current predictive tools 

that are statistically based rely on the institution’s 

ability to access and manipulate large datasets 

and individual student-record data. While more-

complicated statistical models incorporate variables 

such as tuition cost, high school graduate numbers, 

economic factors, and labor-market demand, 

other models look more specifically at institutional 

indicators such as high school grade point averages 

of entering freshmen, as well as the retention, 

progression, and graduation rates of students.

One such model, the Markov chain, has been 

relatively underutilized as an enrollment projection 

tool in higher education. When used properly, 

however, it can aid institutions in determining 

progression of students. Specifically, Markov chains 

are unique from more-traditional ARIMA and 

regression prediction tools in that the following is 

true:

1|	 Markov chains can give accurate enrollment 

predictions with only the previous year’s data. 

These predictions can be helpful when large 

longitudinal databases are not available.

2|	 They can generate predictions on segments of 

a group of students rather than on the entire 

population. Other models often require the use 

of the entire population.
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3|	 The almost intuitive nature of the Markov 

chain lends well to changes in student flow 

characteristics that often cannot be explained 

by a complex statistical formula.

Moreover, Markov chains might be particularly 

helpful in determining progression of students 

during benchmark years when enrollments vary 

significantly due to state mandates and policies, 

or due to institutional changes in admission 

standards. The purpose of this study is to show how 

a Southeastern, masters-level (Larger Programs) 

public institution utilized the unique properties of 

this model to create a tool to better understand 

credit hour flow and student persistence.

Enrollment Management’s Problem with 
Leaky Pipes and the Bulge in the Boa

While enrollment management has clearly evolved 

since the inception of the field of enrollment 

management in the 1970s, some fundamental 

processes have essentially stayed the same. 

Institutions have always wanted to attract the right 

students who fit well within the institution’s role, 

scope, and mission. Once matriculated into the 

institution, there is also a strong desire for students 

to adequately progress through their program 

and graduate within a reasonable amount of 

time (Hossler, 1984). As enrollment management 

developed through time, however, administrators 

became increasingly aware that college-age students 

were more difficult to enroll, higher tuition was 

causing some students to forgo their degree, 

and institutional loyalty was waning as students 

transferred to similar or different institutions. 

Furthermore, institutions have seen an increasing 

number of students who are not fully prepared for 

the rigors of college work, putting greater enrollment 

strain on institutions (Johnson, 2000).

After more than 40 years of enrollment management 

within higher education, it is not surprising that 

metaphorical associations have entered the lexicon 

of the profession as administrators try to better 

understand and predict student matriculation, 

persistence, and graduation. For instance, Ewell 

(1985), referred to students progressing and 

moving throughout their program as student flow, 

while Clagett (1991) discussed following the flow 

of student cohorts through to graduation. Luna 

(1999) used the concept of student flow to explain 

the various pathways by which the institution may 

retain students, and Torraco and Hamilton (2013) 

discussed the student flow of selected groups of 

minority students. Furthermore, many software 

companies have exploited the student flow 

metaphor to describe use of data to identify areas 

where leakage is present in student flow pipelines. It 

is easy, then, to see how the management of student 

retention can be associated with a pipeline and how 

administrators are busy trying to plug the leaks.

Markov chains are uniquely suited to identifying 

these leaks because they can model student flow 

as a set of transitions between several states, much 

like a set of pipes with various inflows, outflows, 

and interconnections. In addition to using the 

model to project enrollments, it is also possible to 

observe from year to year where students enter the 

absorbed state (i.e., do not return to the institution). 

Leakage within the student credit hour (SCH) flow 

pipeline occurs when students withdraw or stop out 

due to reasons that are academic, nonacademic, or 

both. If the model can isolate where the major leaks 

occur, the institution can identify causes and work 

to retain and maintain the flow of students within 

the pipeline. These leaks in the student flow pipeline 

can be detected and monitored from term to term 

so that the institution can develop strategies to 

maintain a healthier flow.
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Another colorful bit of jargon among enrollment 

management professionals is the idea of 

bulging enrollments. For example, Fallows and 

Ganeshananthan (2004) use the term “bulging 

of enrollments” to describe a significantly larger 

share of students needing financial aid or when, 

due to rising tuition costs, students bulge into 

less-expensive 2-year colleges. Herron (1988) uses 

the term “bulge in the boa” to define instances of 

oversupply in student populations quickly entering 

the student flow pipeline, much as a boa constrictor 

swallows a large meal. Liljegren and Saks (2017) 

added that these bulges can significantly affect 

higher education and its future. These bulges occur 

when large groups of students suddenly enter 

higher education, putting a strain on the student 

flow pipeline. As the bulge dissipates, its effects 

may remain, and it may redefine student flow for 

the future. With Markov chain models, institutions 

can monitor these bulges in the system so that they 

can address issues such as course offerings and 

instructor availability.

Markov Chains and Higher Education

A Markov chain is a type of projection model 

created by Russian mathematician Andrey Markov 

around 1906. It uses a stochastic (random) process 

to describe a sequence of events in which the 

probability of each event depends only on the state 

attained in the previous event.

The Markov chain is a stochastic rather than a 

deterministic model. Unlike a deterministic process 

where the output of the model is fully determined by 

the parameter values and by sets of previous states 

of these values, a stochastic process possesses 

inherent randomness: the same set of parameter 

values and initial conditions can lead to different 

outputs.

Take, for example, the scenario of an individual 

returning home from work. In a deterministic 

process, there is only one route (Route A) from 

work to home, and the amount of time to get home 

depends only on the variable speed of the driver. In 

a stochastic process, the individual will have multiple 

routes (Routes A, B, and C) from which to choose, 

and each of the routes intersects the other routes 

at various points. The randomness of the process 

occurs when the individual combines routes to go 

home, if she makes the choices at each intersection 

randomly. For example, the driver may take Route A 

part of the time, followed by Route C, then Route B, 

and back to Route A again, or take some completely 

different path. There are many random possibilities 

the individual may take to get home, leading to a 

variety of possible driving times.

Markov chains utilize transition matrices that 

represent the probabilities of transitioning from 

each possible state to each other possible state. 

These states can be absorbing or nonabsorbing: 

nonabsorbing states allow future transitions to other 

states while absorbing states do not.

Markov chains have been widely and successfully 

used in business applications, from predicting sales 

and stock prices to personnel planning and running 

machines. Markov chains also have been used in 

higher education, albeit with much less frequency.

In most studies where Markov chains were used in 

enrollment management, the various transitional 

states were categorized either by student 

classification or by other simpler dichotomous 

measures. Given the strength of the Markovian 

stochastic process in generating student flow 

probabilities using data only from the previous 

year, the process of classifying students into other 

kinds of states could be appealing. Such states 
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could include SCHs, student debt, and (on a more 

systemwide level) the transitioning from one 

institution or program to another. The possibilities 

are diverse.

One of the first to use Markov chains in determining 

enrollment projections was Oliver (1968) when 

he compared Markov chains to the much more 

established use (at that time) of grade progression 

ratios to predict enrollments at the University of 

California. According to Oliver’s study, enrollment 

forecasting made a prediction on the basis of 

historical information on past enrollment and 

admission trends. In determining a stochastic 

process, Oliver demonstrated that the fraction of 

students who leave one grade level (class status) i 

and progress to class status j is a fraction pij; that 

progress could also be time dependent. These 

fractions pij can also be interpreted as random 

transition probabilities. He determined that the 

process allowed for contributions in one grade level 

that were identified by their origins, such as prior 

grade level, returning to the same grade level, and 

new admissions (Oliver, 1968).

According to Hopkins and Massy (1981), the use of 

Markov chains allows the researcher to observe the 

flow of students from one classification level (i.e., 

freshman, sophomore, junior, senior) to the next 

class level. The chain also incorporates students who 

stay at the same class level from one year to the 

next. Therefore, the Markov chain for class level, as 

studied by Hopkins and Massy, can be described as 

follows:

1|	 The number of students in class level i who 

progress to class level j

2|	 The number of students in class level i who stay 

in the same level

3|	 The number of students who leave the 

institution (drop out, stop out, or graduate)

Similarly, Borden and Dalphin (1998) used Markov 

chains to develop a 1-year enrollment transition 

matrix to track how students of each class level 

progressed. The authors found that unique Markov 

chain models were valuable in measuring student 

progression without having to rely on 6-year 

graduation rate models, which could be ineffective 

due to the large time lags. Specifically, the model 

was built around a transition matrix where student 

flow was tracked from one year to the next, and the 

rates of transition from four nonabsorption states 

(i.e., freshman to sophomore) were placed into a 

matrix that was separate from the two absorption 

states (i.e., drop out, graduate).

Using the percentages in the two matrices, those 

students who continue in nonabsorption states were 

processed through the matrix using the established 

rates of transition until, asymptotically, all students 

reach the final absorption state.

Additionally, Borden and Dalphin (1998) developed 

discrete Markov chain processes to simulate 

the effect of changes in student body profile on 

graduation rates. In these models, the authors 

incorporated credit-load and grade performance 

categories. Their results indicated that, while 

there was a strong association between grade 

performance and persistence, it took very large 

changes in levels of student performance to impact 

retention and graduation rates modestly.

In a more narrowly focused study, Gagne (2015) 

used Markov chains to predict how English 

Language Institute (ELI) students progressed 

through science, technology, engineering, and 

math (STEM) programs. Specifically, the model 
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created transitional (nonabsorbing) states based 

on classification level and three absorbing states to 

include those students who left the institution, those 

who graduated from a STEM program, or those who 

graduated from a non-STEM program. Findings from 

their study indicated that the ELI students tended to 

progress at a higher rate than non-ELI students in 

STEM programs, and that ELI students who repeated 

the freshman year were more likely to repeat again 

than they were to transition to the sophomore year.

Correspondingly, a study by Pierre and Silver (2016) 

used Markov chain models to determine the length 

of time it took students to graduate from their 

institutions. As with previous studies, students 

were divided into nonabsorbing transitional states 

(i.e., freshman, sophomore, junior, senior) and 

absorbing states (i.e., graduate, nonreturning). Using 

the Markovian property, the future probability of 

transitioning from one state to another depended 

only on the present state of the process and was not 

influenced by its history. The study found that it took 

5.9 years for a freshman to graduate and 4.5 years 

for a sophomore to graduate from the institution.

Brezavšček, Bach, and Baggia (2017) successfully 

used Markov chain models to investigate the pattern 

of students’ enrollment and academic performance 

at a Slovenian institution of higher education. The 

model contained five transient or nonabsorbing 

states and two absorbing states. The authors used 

student records for a total of eight consecutive 

academic seasons, and estimated the students’ 

progression toward the next stage of the program. 

From those transition percentages they were able 

to obtain progression, graduation, and withdrawal 

probabilities.

As mentioned earlier, most Markov chain models 

involving enrollment management and prediction 

use student classification to create the various 

states of the model. Using student classification in 

model specification, however, could create states 

that are overly broad in nature since, at most 

semester-based colleges and universities, student 

classification varies by 30 hours.

Ewell (1985), who also used Markov chains to 

predict college enrollments, noted two limitations 

of the models. First, because the estimation of the 

probabilities rests on historical data, Markov chains 

may be sensitive to when the data were collected. 

This could be especially true with significant 

enrollment gains or declines from one year to 

the next. Second, according to Ewell, different 

subpopulations may behave in different ways, thus 

necessitating the need to disaggregate into smaller 

groupings.

However, the Markov chain’s attributes may allow 

a unique ability to detect the leaks and bulges. 

Because this type of projection model uses the 

stochastic process to describe a sequence of events 

in which the probability of each event depends only 

on the state attained in the previous event, changes 

to student flow are immediate and are not subject to 

potentially skewed results of the past. In short, the 

limitations mentioned by Ewell (1985) can be utilized 

when building the student flow matrices to detect 

significant shifts in enrollment and to determine 

which groups of students are leaving the institution 

at a higher rate.

METHODOLOGY
The current study used Markov chains to predict 

Fall enrollment at a Southeastern, masters-level 

(Larger Programs) public institution based on 

annual Fall semester enrollment for degree-seeking 
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undergraduates. The process involved obtaining 

data from the institution’s student information 

system and separating students into groupings 

based on their cumulative SCHs earned. Student 

flow was measured from Fall of year i to Fall of year 

i+1 based on whether students stayed within their 

credit hour category, moved into another credit 

hour category, or did not enroll at the institution. 

These student flow changes for each category were 

then summed and applied to year i+2 as a prediction 

of enrollment.

Within the model, at a given point in time each 

student has a particular state, and each student 

is treated as having a particular probability of 

transitioning to each other state or staying within 

the same state. Most of these states are based on 

the number of SCH the student has accumulated 

(i.e., the SCH category). Because the SCH category 

of a student was determined by the number of 

cumulative SCHs a student earned, most of the 

credit hour flow scenarios included students 

advancing to a higher credit hour category or 

students withdrawing or graduating. While it is rare 

for a student to move from a particular credit hour 

category to a lower category, it can happen through 

the transfer process when, after the student has 

enrolled, the current institution does not accept 

certain SCHs from the former institution.

The characteristic that makes this model a Markov 

chain is the fact that a given student’s transition 

probabilities between states are assumed to depend 

only on that student’s current state and not on any 

of the student’s previous states. This is a simplifying 

assumption that allows all students within a given 

state to be treated similarly regardless of their 

histories. Otherwise, the model would become much 

more complicated and difficult to apply.

The main parameters of the model are estimates 

of these transition probabilities. These transition 

probabilities are estimated by calculating the 

fractions of students that transitioned from each 

state to each other state relative to the number 

of students initially in that state in past years’ 

enrollment data. The other parameters of the model 

are the fractions of new incoming students by credit 

hour category. The total number of new incoming 

students is assumed to be fixed, thus the estimated 

number of incoming students by credit hour 

category follows from these fractions.

The model process is recursive in that predictions 

for Fall X are produced from the enrollment data 

from Fall X-2 and Fall X-1 and the subsequent flow 

rates from Fall X-2 to Fall X-1.

We can now describe the basic assumptions that we 

used to construct the predictive models:

1|	 Each model models flow from one year to the 

next and is named accordingly. For example, Fall 

2013 to Fall 2014 is known as the 13_14 Model 

and is based on the starting data for Fall 2013 

and the new student data from Fall 2014.

2|	 As the model is applied, the output headcount by 

SCH level for the (i+1)th year becomes the input 

headcount for the next iteration of the model.

3|	 When the model is applied to a future year, the 

total number of new students is assumed to be 

constant and the same as the number of new 

students for the (i+1)th year. The distribution of 

new students by SCH level is also assumed to be 

constant.

4|	 When the model is applied to a future year, it 

is assumed that the fractional student loss and 

fractional student continuation ratios are fixed 

by SCH level.
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5|	 When the model is applied to a future year it is 

assumed that the fractional flow from SCH level 

to SCH level is the same as for the year used to 

construct the model.

The model divides the undergraduates into 24 

6-SCH groupings. This method uses historic 

ratios of SCH student subsets gathered from the 

student information system to predict future Fall 

headcounts.

The 6-SCH groupings used in this model are 

individually less broad than the more familiar 

student classification levels. However, it is possible 

to aggregate the 6-SCH bins into a version of these 

student levels, which we define as

•	 Freshmen: ≤30 SCH

•	 Sophomore: >30 SCH and ≤60 SCH

•	 Junior: >60 SCH and ≤90 SCH

•	 Senior: >90 SCH

Note that these classification-level definitions do 

not exactly match the institution’s definitions. In 

using SCH groupings, the enrollment pipeline may 

be much more finely observed and enrollment 

patterns among students may be more precisely 

distinguished. While it is the goal of this study 

to develop a model to predict the coming Fall 

enrollment once the previous Fall enrollment is 

known, the model will not address enrollment by 

major, academic department, or college.

MODEL DESCRIPTION
The student information system parsed out students 

into the various SCH categories based on the 

predetermined groupings. These students were 

then tracked during the following Fall semester to 

determine student flow percentages. Within this 

study, student flow states are defined as:

1|	 students in credit hour group j who stayed 

within that group,

2|	 students in credit hour group j who moved to a 

different credit hour group,

3|	 students in other credit hour groups who 

moved to group j, and

4|	 students who were no longer enrolled at the 

institution.

Within this model, the following terms and symbols 

are used:

1|	 n is the number of SCH levels in the model (n = 

24 for the 6-SCH groupings).

2|	 hij is the ith Fall semester headcount for the jth 

SCH level.

3|	 Hi is the total undergraduate headcount for the 

ith semester.

4|	 lij is the number of the hij subset students not 

enrolled the next Fall semester.

5|	 Li is the total number of undergraduates 

enrolled in the ith Fall semester that are not 

enrolled in the (i+1)th Fall semester.

6|	 cij = hij – lij is number of continuing students in 

the jth SCH level.

7|	 Ci is the total number of undergraduates that 

enrolled in the ith Fall semester that are also 

enrolled in the (i+1)th Fall semester.
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8|	 dijk is the number of the continuing cij subset 

students that move from SCH level j to SCH level 

k from the ith Fall to the (i+1)th Fall.

9|	 wij is the number of the Ci subset students that 

flow from all other levels into level j.

10|	oij is the number of the cij subset students that 

flow out of level j into all other levels.

11|	s(i+1)j is the number of the new incoming students 

for the (i+1)th Fall semester where j is the SCH 

level.

12|	N(i+1) is the total number of incoming new 

undergraduate students for the (i+1)th 

semester.

With this terminology in place, the previously stated 

assumptions of the models can now be described 

algebraically:

1|	 When applying a model to a future period 

from Fall (i+1) to Fall (i+2), the total number of 

incoming students is assumed to be the same 

as it was for the period used to build the model, 

so it is assumed to have the value Ni+1. The 

fraction of new students by SCH level for that 

upcoming year is also assumed to be the same 

as it was in the period used to train the models, 

so each is assumed to be s(i+1)j  ⁄ Ni+1. Therefore, 

the estimated number of new students for a 

particular SCH level in that future year can be 

obtained by multiplying the value of this fraction 

by the estimated total number of students in 

the current year. That is, the estimate for the 

number of new students in the future year for 

that particular SCH level is given by  

s(i+1)j  ⁄ Ni+1 × Ni+1 = s(i+1)j.

2|	 The fractional loss and fractional continuation 

ratios are also assumed to be fixed by SCH level. 

In other words, for a future year these ratios 

are assumed to be lij  ⁄ hij and cij  ⁄ hij, the same as 

they were in the year used to build the model. 

Therefore, for the upcoming future period from 

Fall (i+1) to Fall (i+2), the estimated number of 

lost and continuing students for the jth SCH 

level are obtained by multiplying these ratios by 

the number of students h(i+1)j in that SCH level in 

the current Fall (i+1). This multiplication is lij  ⁄ hij 

× h(i+1)j to estimate lost students in the jth SCH 

level and cij  ⁄ hij × h(i+1)j to estimate continuing 

students in the jth SCH level.

3|	 Finally, the fractional flow from a particular SCH 

level to another SCH level is assumed to be 

fixed. In other words, for a future year these 

ratios are assumed to be dijk ⁄ cij, the same as 

they were in the year used to build the model. 

Therefore, for the upcoming future period from 

Fall (i+1) to Fall (i+2), the estimated number 

of students transitioning from SCH level j to 

SCH level k is given by the value of this ratio 

dijk ⁄ cij multiplied by the estimated number of 

continuing students in the jth SCH level.

The processes described above can be applied 

iteratively to obtain estimates for years even farther 

into the future by using the estimated values from 

one iteration as inputs into the next iteration.

Using the terms and formulae, we created a 

spreadsheet matrix (Table 1) that includes the 

various credit hour classifications as well as the 

nonabsorbed transient student states and the 

absorbed state of no longer enrolled.
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From this SCH flow structure, we can observe 

the relationships of credit hour flow between 

and among the various states, including flow into 

nonabsorbing states (staying or moving into another 

credit hour state) or into absorbing states (not 

enrolling at the institution). The relationships among 

the variables are as follows:

1|	 cij = ∑ 
n
k=1  dijk represents those current students 

who were in SCH level j who stayed at the 

institution.

2|	 oij = ∑ 
n
k=1
k≠j

 dijk  represents those current students 

who were in SCH level j who moved to all other 

SCH levels.

3|	 wik = ∑ 
n
j=1
j≠k

 dijk  represents those current students 

who were in SCH levels other than k who moved 

to SCH level k.

4|	 Hi = ∑ 
n
j=1  hij represents semester headcount at 

Fall semester i.

5|	 Li = ∑ 
n
j=1  lij represents those students at Fall 

semester i who did not reenroll.

6|	 Ci = ∑ 
n
j=1  cij represents those students at Fall 

semester i who did reenroll.

The following relationship,

∑ ∑
n

k=1

n

j=1
wik = oij

 

shows two equivalent ways of expressing the 

collection of students who remain at the institution 

and move from any SCH level to a different SCH 

level during the year. Conservation of student flow is 

obtained only when students from level j stay in SCH 

Table 1. Basic Structure Matrix of the Markov Chain Model
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Note: This table shows the basic structure matrix of the headcount SCH flow associated with the Markov chain model that connects 

the undergraduate headcount in the ith Fall to the headcount in the (i+1)th Fall.
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level j or move to other SCH levels, or when students 

from other SCH levels move into SCH level j.

Given these relationships, the number of 

undergraduates by level in the second Fall semester 

can be calculated using the following formula:

h(i+1)j = hij –  ij – oij + wij + s(i+1)j

This is the number of total transient students in 

one of the SCH levels after 1 year who were not 

absorbed by withdrawing or graduating. Therefore, 

the total number of students in the (i+1)th Fall 

semester is simply given by

Hi+1 = Hi – Li – Ni+1

since the inflow and outflow terms cancel upon 

summation.

RESULTS
The model used actual data from a Southeastern, 

masters-level (Large Programs) public institution 

for Fall 2010 through Fall 2017. The enrollments for 

these 8 years are displayed in Table 2.

In developing the Markov chain matrix for each year, 

the total number of students within each category 

were noted and tracked to the following year. Within 

this matrix, one can observe the various student 

states by each category to determine who is moving 

into transitional (nonabsorbing) states and who is 

graduating or not returning. These more-granular 

data within the matrix offer clues as to when 

students may be leaving the institution and where 

there are potential bulges in the system coming 

from new or transfer students.

Table 2. Annual Enrollment Data, Fall 2010–Fall 2017

Fall i
Fall i 

Headcount Lost Continuing New
Fall (i+1) 

Headcount

Fall 2010 9,652 3,773 5,879 3,957 9,836

Fall 2011 9,836 4,082 5,754 3,721 9,475

Fall 2012 9,475 3,965 5,510 3,761 9,271

Fall 2013 9,271 3,843 5,428 3,574 9,002

Fall 2014 9,002 3,685 5,317 3,598 8,915

Fall 2015 8,915 3,792 5,123 3,993 9,116

Fall 2016 9,116 3,945 5,171 3,919 9,090

Fall 2017 9,090 not known not known not known not known
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28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

SCH Level Groupings

(>162)

(157–162)

(151–156)

(145–150)

(139–144)

(133–138)

(127–132)

(121–126)

(115–120)

(109–114)

(103–108)

(97–102)

(91–96)

(85–90)

(79–84)

(73–78)

(67–72)

(61–66)

(55–60)

(49–54)

(43–48)

(37–42)

(31–36)

(25–30)

(19–24)

(13–18)

(7–12)

(0–6) SCH Level Definition

257

49 61 96

113

135

154

179

237

271

323

341

400

347

347

346

369

446

399

291

316

332

386

501

322

245

264

1589 HC1 (Fall 2016)

176

25 45 78 79 89

116

131

171

188

230

204

248

165

121

84 85

105

114

92 94

108

121

147

141

110

81

597 Lost

81 24 16 18 34 46 38 48 66 83 93

137

152

182

226

262

284

341

285

199

222

224

265

354

181

135

183

992 Continuing

4 1 4 2 0 1 1 3 5 3 5 8 11 9 13 18 16 37 31 19 16 13 17 11 1 1 0 0

GradA16

4 1 2 0 0 1 1 2 5 3 1 6 6 5 12 12 13 27 21 17 13 8 13 9 1 0 0 0

GradA16E

124

21 32 56 48 56 90 98

135

159

188

147

175

100

34 14 1 0 0 0 0 0 0 0 0 0 0 0

GradB16

2 1 0 0 1 3 2 3 3 2 5 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
GradB16E

Movement to SCH Level Number

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 3 15 60

258

408

158

60 14 1

M
ovem

ent from
 SCH

 Level N
um

ber

1 3 5 21 85 42 10 6 5 2

4 13 45 35 18 9 5 3

1 4 16 46 58 31 13 7 4

3 5 38

115

103

57 19 11 5

1 1 6 24 89 82 31 19 5 1 6

1 1 10 19 70 59 33 17 9 7

3 8 29 69 43 39 17 11 8

1 1 7 31 56 49 27 13 10 9

5 9 71 84 58 26 21 9 1 10

4 20 53

123

79 28 23 9 11

4 18 46 85 79 25 13 12 12

1 1 2 5 5 45 79 64 34 18 7 13

1 8 28 62 84 17 17 8 14

1 8 18 60 52 28 10 2 15

2 1 16 38 49 23 13 5 16

1 2 4 16 27 44 19 16 5 17

12 25 18 17 10 8 18

2 1 4 22 23 11 11 6 19

1 4 10 21 8 12 7 1 20

1 6 10 14 6 6 3 21

4 8 10 4 4 4 22

18 6 9 6 5 23

20 3 5 5 24

13 1 3 25

16 26

24 27
28

81 0 0 1 1 2 4 2 2 3 3 3 5 3 1 1 2 2 1 4 3 5 6 3 5 6 5 15 Static

97 27 42 46 77 84 98

148

182

228

281

245

336

255

202

207

200

253

280

230

224

235

342

435

169

65 14 0

Inflow to

0 24 16 17 33 44 34 46 64 80 90

134

147

179

225

261

282

339

284

195

219

219

259

351

176

129

178

977 Outflow from

109

10 14 22 20 32 41 45 50 25 46 62 87 77 96

107

105

141

116

85 79

103

116

130

161

195

239

1606 New

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113

161

195

239

1606 NewUnder30Hrs 

34 4 2 5 2 12 12 17 19 7 19 21 24 25 45 56 63

103

74 38 32 45 57 60 37 46 23 32 Transfer

287

37 56 69 98

118

143

195

234

256

330

310

428

335

299

315

307

396

397

319

306

343

464

568

335

266

258

1621 HC2 (Fall 2017)

Table 3. Fall 2016 to Fall 2017 6-SCH
 M

atrix
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Table 3 represents one such matrix, the 6-SCH 

matrix from Fall 2016 to Fall 2017. The 28 6-SCH 

groupings are labeled down the left with the same 

corresponding 28 groupings across the center of 

the matrix. This table also contains headcount by 

groupings, how many within each grouping did not 

return, how many graduated, and how many new 

students enrolled in Fall 2017 but not Fall 2016. 

Matrices such as this one can be examined to 

identify the aforementioned leaks and bulges in the 

enrollment pipeline.

The following labels are used in Table 3:

1|	 HC1 (Fall 2016): Fall 2016 census undergraduate 

enrollment excluding special groups.

2|	 Lost: Enrolled Fall 2016 but not in Fall 2017. 

This includes students that graduated without 

reenrolling, as a subset. When determining 

if the student returned in Fall 2017, only 

undergraduate students, excluding special 

groups, were considered.

3|	 Continuing: Enrolled in Fall 2016 and Fall 2017.

4|	 GradA16: Awarded an associate degree in 

Fall, Spring, or Summer of Academic Year 

2016–17. Note that only one degree is counted 

per student to avoid double-counting, with 

bachelor’s degrees given precedence over 

associate’s degrees.

5|	 GradA16E: Awarded an associate’s degree and 

enrolled in next Fall term in another degree 

program. These students are a subset of 

GradA16.

6|	 GradB16: Awarded a bachelor’s degree in Fall, 

Spring, or Summer of Academic Year 2016–17.

7|	 GradB16E: Awarded a bachelor’s degree and 

enrolled in next Fall term in another degree 

program. These students are a subset of 

GradB16.

8|	 Columns in the center indicate movement of 

continuing students from the Fall 2016 SCH 

categories to the Fall 2017 SCH categories. Note 

that the central portion of Table 3 does not 

include counts for students who enrolled both 

semesters but remained in the same SCH level; 

these counts are instead separately labeled 

Static.

9|	 Static: Enrolled in Fall 2016 and Fall 2017 and 

stayed in the same SCH level.

10|	Inflow to: Enrolled in Fall 2016 within a different 

SCH level but moved to the current SCH level in 

Fall 2017.

11|	Outflow from: Enrolled in the SCH level during 

Fall 2016 but moved to another SCH level in Fall 

2017.

12|	New: Enrolled in Fall 2017 but did not enroll in 

Fall 2016. (NewUnder30Hrs and Transfer are 

subsets of New.)

13|	NewUnder30Hrs: New students with fewer than 

30 hours.

14|	Transfer: Transfer students.

15|	HC2: Fall 2017 census undergraduate 

enrollment excluding special groups.

According to the table, in Fall 2016 there were 1,589 

students in the (0–6) SCH group. Out of these, 597 

did not return the next Fall semester. A total of 

408 of these students transitioned into the (25–30) 

SCH group, indicating that they were progressing 

normally, while 232 transitioned into groups of 24 

or fewer SCH. With a quick examination of the flow, 

it is easy to see that the majority of students are 

not returning within the SCH groupings that make 

up the freshman and sophomore years as denoted 

in the Lost column. In the (85–90) SCH grouping, 

109 students graduated, and 5 of the students 

who graduated reenrolled in Fall 2017, meaning 
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that 104 of the students who graduated did not 

reenroll. A total of 165 students in the (85–90) SCH 

grouping were lost (did not reenroll); subtracting the 

aforementioned 104 students leaves 61 students 

who neither graduated nor reenrolled.

A total of 914 new transfer students entered for Fall 

2017, indicating a significant number of students 

who took some type of transfer credit. Many of 

these new transfers could constitute dual-enrolled 

students who took both high school and college 

classes. The bulk of the new transfer students, 

however, are entering with more than 54 and fewer 

than 84 SCHs.

In observing the higher groupings, the table 

indicates that 865 students had accumulated more 

than 126 SCH and 448 (52%) graduated. Of the 

students who earned more than 126 SCHs, 608 did 

not reenroll in the institution.

While this table represents only one of the six 

matrices created for this study, the possibilities of 

tracking student flow by groupings, classifications, 

or years are numerous. Moreover, it can be argued 

that the process of tracking student flow through 

transitional states within the Markov process is 

somewhat intuitive and indicative of the strong 

predictive properties of the model.

Table 4 shows the predictions for the next 3 years, 

along with the actual data. The model was built using 

the flow of students over a particular academic 

year. There were six such academic years used for 

Table 4. Actual Enrollment and Predictions, Fall 2012–Fall 2017

Model Fall 12 Fall 13 Fall 14 Fall 15 Fall 16 Fall 17

Reality Actual Headcounts  9,475  9,271 9,002  8,915 9,116 9,090

Model 10_11 6SCH Predicted Headcounts 
% Diff. from Actual

9,948 
4.99%

9,999 
7.85%

10,002 
11.11%

Model 11_12 6SCH Predicted Headcounts 
% Diff. from Actual

9,244 
–0.29%

9,076 
0.82%

8,958 
0.48%

Model 12_13 6SCH Predicted Headcounts 
% Diff. from Actual

9,105 
1.14%

8,980 
0.73%

8,903 
–2.34%

Model 13_14 6SCH Predicted Headcounts 
% Diff. from Actual

8,839 
–0.85%

8,745 
–4.07%

8,694 
–4.36%

Model 14_15 6SCH Predicted Headcounts 
% Diff. from Actual

8,874 
–2.65%

8,865 
–2.48%

Model 15_16 6SCH Predicted Headcounts 
% Diff. from Actual

9,258 
1.85%

Note: The model creates predictions for the next 3 years (when actual data are available for comparison) for each of the models 

using the 6-SCH methods.
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construction of the models. The columns of Table 4 

show the years for which an enrollment prediction 

was generated. As can be seen in the table, 

predictions for the 10_11 Model for both methods 

were overspecified by about 5% for Fall 2012 

and about 11% for Fall 2014. The 11_12 Models 

produced better projections, coming within less than 

1% of the actual values for all 3 years. The prediction 

of the 12_13 Model differed from the actual 

enrollment by an average of –0.2%. Results from the 

13_14 Model indicate that the prediction differed 

by an average of 3.1%. In most cases, predictions 

farther into the future from the years used to train 

the models have greater residuals, which is to be 

expected in any forecasting problem.

We calculated averages of the absolute values of 

the percentage differences between the actual and 

predicted values for enrollment using the actual and 

predicted enrollment from Table 4. The percentage 

difference between the predicted and actual value is 

defined as

% difference = 
predicted value - actual value

actual value
x 100%

We can examine the predictive ability of the models 

by using the average value of the absolute values 

of these percentage differences, because these 

values show on average how far off the models 

were, regardless of sign. In a mathematical sense, 

the absolute value between two numbers is known 

as the standard Euclidean distance between two 

points and indicates the real distance between two 

numbers (Bartle & Sherbert, 2011). The results as 

shown in Table 5 clearly indicate that the predictive 

ability of the model decreases as number of 

years out from the years used to build the model 

increases, which is expected, similar to how weather 

forecasts become less accurate the farther they go 

into the future.

Based on the results from Table 5, the study will 

examine only 1-year-out predictions, because these 

were the most accurate. The actual values are 

compared with those 1-year-out predictions in Table 

6. The predicted enrollment for Fall X in Table 6 is 

produced from the enrollment data from Fall X-2 

and Fall X-1 and subsequent flow rates from Fall X-2 

to Fall X-1.

Note that the 6-year average of the absolute 

values of the percentage differences by class range 

from 2.8% to 4.7%. The 2016 freshman percent 

difference of –12.9% represents an outlier due 

to a major university initiative to increase new 

freshmen enrollment. This influx of new freshmen 

was significantly different from past years and clearly 

signals the bulge in the student flow pipeline as 

mentioned above. By utilizing the iterative process 

of producing Fall X projections from the enrollment 

data from Fall X-2 and subsequent flow rates 

from Fall X-2 to Fall X-1, the effect of this bulge in 

the system can be tracked into the future to plan 

upcoming course offerings.

Table 5. Mean Absolute Value of Percent 
Differences by Years Out for 6-SCH Models

Prediction 
Time Frame

Mean Absolute Value of 
Percent Difference

1 year out 1.96%

2 years out 3.19%

3 years out 4.57%
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By observing the predictive capabilities of the model, 

it is easy to see how administrators and enrollment 

managers can use these results to plan for classes 

and instructional personnel. Here, both annual 

projections and classification average projections for 

the 5-year period were off by no more than 6.6%, 

which should fall within the margin of error for most 

larger institutions.

Furthermore, Monte Carlo simulation could be 

used to obtain enrollment predictions that give a 

range of plausible values instead of a single point 

estimate for a future year’s enrollment. Monte Carlo 

simulations have been used in the context of higher 

education by Torres, Crichigno, and Sanchez (2018) 

to examine degree plans for potential bottlenecks. 

In applying these methods to this enrollment model, 

the fractions of students transitioning between 

specific levels would be treated more like the result 

of many coin flips than as fixed fractional values, and 

the ranges of predicted values could be obtained by 

repeated random simulation. This level of simulation 

was not performed in this study.

Table 6. The 6-SCH Models’ 1-Year-Out Predictions Compared to Actual Enrollment, 2012–17

Freshman Sophomore Juniors Seniors All Levels

Mean Absolute 
% Difference of 

Class Levels 

2012 Actual 
Predicted 
% Difference

2,876 
3,114 
8.28%

2,035 
2,090 
 2.68%

1,871 
1,966   
5.10%

2,693 
2,778 
3.17%

9,475  
9,948 
5.00% 4.81%

2013 Actual 
Predicted 
% Difference

2,729  
2,817 
3.23%

1,890 
1,875  

–0.79%

1,870 
1,834 

–1.92%

2,782 
2,718 

–2.30%

9,271  
9,244 

–0.29% 2.06%

2014 Actual 
Predicted 
% Difference

2,644 
2,709   
2.47%

1,803 
1,800  

–0.16%

1,870 
1,789 

–4.36%

2,685 
2,807 
4.53%

9,002  
9,105 
1.14%

	

2.88%

2015 Actual 
Predicted 
% Difference

2,533 
2,574 
1.60%

1,944 
1,809  

–6.93%

1,738 
1,816 
4.51%

2,700 
2,640 

–2.24%

8,915  
8,839 

–0.85% 3.82%

2016 Actual 
Predicted 
% Difference

2,921 
2,543 

–12.93%

1,724 
1,885 
9.36%

1,855 
1,801 

–2.89%

2,616 
2,644 
1.07%

9,116 
8,874 

–2.65% 6.56%

2017 Actual 
Predicted 
% Difference

3,048 
3,053 
0.17%

1,829 
1,788 

–2.24%

1,652 
1,766 
6.91%

2,561 
2,651 
3.51%

9,090 
9,258 
1.85% 3.21%

Mean Absolute 
% Difference

4.78% 3.69% 4.28% 2.80% 1.96%
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CONCLUSIONS
The use of Markov chains in projecting enrollment 

and the management thereof has gained popularity 

among professionals in higher education. The 

short-term projections created by this stochastic 

process are unique to other time-tested forecasting 

tools used in enrollment management. When 

used properly, Markov chains can aid institutions 

in determining progression of students that 

are different from more-traditional ARIMA and 

regression prediction tools in that:

1|	 they can give accurate enrollment predictions 

with only 2 previous years’ data, which can be 

helpful when large longitudinal databases are 

not available;

2|	 they can be used to generate predictions on 

segments of a group of students rather than the 

entire population, which may be required for 

other models; and

3|	 the almost intuitive nature of the Markov 

chain lends well to changes in student flow 

characteristics, which often cannot be explained 

by a complex statistical formula.

By creating groupings and tracking students within 

those groupings by the state they transition into, the 

researcher can also get a better picture of what type 

of students are leaving and when they are leaving.

As shown in this study, the strong predictability 

of Markov chains allows administrators to better 

plan course scheduling and instructor demand 

while managing tight budgets. In this study, several 

predictive headcount models were developed using 

SCH flow as the annual driver. Eight years of Fall 

enrollment data from the institution were used to 

develop the models. When applied to historical 

data each gives 1-year-out predictions within a 

calculated level of uncertainty. The models can easily 

be modified to change the new student input data, 

the continuation rates, and the interlevel flow rates, 

should that be desired. Furthermore, similar models 

could be used to track Fall to Spring retention as well 

as Spring to Fall retention.
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